Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

1. Aufgabe

Es sei $n \in \mathbb{N}$ mit $n \geq 2$. Zeigen Sie:

- a) Es sei $A \in \mathbb{R}^{n \times n}$. Ist A^2 diagonalisierbar, so ist nicht unbedingt auch A diagonalisierbar.
- b) Ist $U \subseteq \mathbb{R}^n$ ein Untervektorraum mit $\dim_{\mathbb{R}}(U) = k < n$, so gibt es lineare Abbildungen $f_1, \ldots, f_{n-k} \in \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n, \mathbb{R})$ mit

$$U = \bigcap_{i=1}^{n-k} \operatorname{Kern}(f_i).$$

2. Aufgabe

Es sei $n \in \mathbb{N}$. Es sei $A \in \mathbb{R}^{n \times n}$. Weiter bezeichne E_r , $1 \le r \le n$, die $r \times r$ -Einheitsmatrix. Zeigen Sie:

Ist

$$B = \left(\begin{array}{cc} E_r & 0\\ 0 & 0 \end{array}\right) \in \mathbb{R}^{n \times n},$$

so ist das charakteristische Polynom f_{AB} von AB gleich dem charakteristischen Polynom f_{BA} von BA.

3. Aufgabe

Es sei $B \in \mathbb{R}^{2 \times 2}$. Weiter sei

$$m_B: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}, \ A \mapsto BA.$$

- a) Zeigen Sie, dass m_B eine lineare Abbildung ist und dass m_B genau dann surjektiv ist, wenn $det(B) \neq 0$ gilt.
- b) Es sei nun $t \in \mathbb{R}$ ein Parameter sowie

$$B = \left(\begin{array}{cc} 2 & t - 1 \\ \\ 1 & t \end{array}\right).$$

Bestimmen Sie die Eigenwerte und die zugehörigen Eigenräume von m_B . Bestimmen Sie zudem diejenigen t, für die m_B nicht diagonalisierbar ist.

4. Aufgabe

Für eine lineare Abbildung $F:V_1\to V_2$ bezeichne $M_{B_1,B_2}(F)$ die Darstellungsmatrix von F bezüglich einer Basis B_1 von V_1 und einer Basis B_2 von V_2 .

Es sei nun $A := (v_1, v_2, v_3)$ eine Basis eines \mathbb{R} -Vektorraums V und

$$B := (v_1 + v_2, v_2 + v_3, v_3 + v_1).$$

- a) Zeigen Sie, dass B ebenfalls eine Basis von V ist.
- b) Sei $\mathrm{id}_V: V \to V: v \mapsto v$ die identische Abbildung. Berechnen Sie die Darstellungsmatrizen $M_{A,A}(\mathrm{id}_V), M_{B,A}(\mathrm{id}_V), M_{A,B}(\mathrm{id}_V)$ sowie $M_{B,B}(\mathrm{id}_V)$.

5. Aufgabe

Es sei $\alpha \in \mathbb{R}$ ein Parameter. Weiter sei

$$A = \begin{pmatrix} \frac{3+\alpha}{4} & \frac{\sqrt{3}(1-\alpha)}{4} \\ \frac{\sqrt{3}(1-\alpha)}{4} & \frac{1+3\alpha}{4} \end{pmatrix} \in \mathbb{R}^{2\times 2}.$$

- a) Zeigen Sie, dass 1 ein Eigenwert von A ist.
- b) Es sei Q_{α} die von dem Parameter α abhängige Quadrik, welche durch die folgende Gleichung definiert wird:

$$(x,y) \begin{pmatrix} \frac{3+\alpha}{4} & \frac{\sqrt{3}(1-\alpha)}{4} \\ \frac{\sqrt{3}(1-\alpha)}{4} & \frac{1+3\alpha}{4} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \sqrt{3} \cdot x + y = 0.$$

Bestimmen Sie in Abhängigkeit von α die euklidische Normalform sowie den affinen Typ von Q_{α} .