Thema Nr. 3 (Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Aufgabe 1:

Man bestimme in Abhängigkeit vom Parameter $\alpha \in \mathbb{R}$ die Lösungsmenge L_{α} des linearen Gleichungssystems

$$x_{1} + x_{2} + x_{3} - x_{4} = 0$$

$$x_{2} - x_{3} + \alpha x_{4} = 1$$

$$2x_{1} + x_{2} + \alpha x_{3} + x_{4} = 1$$

$$x_{1} + x_{2} + \alpha x_{4} = 1$$

Aufgabe 2:

Man betrachte den \mathbb{R} -Vektorraum \mathbb{R}^4 mit der Standardbasis e_1, e_2, e_3, e_4 sowie den von den Vektoren

$$v_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \quad v_{2} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_{3} = \begin{pmatrix} 2 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \quad v_{4} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}, \quad v_{5} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$

aufgespannten Untervektorraum $V = \text{span}\{v_1, v_2, v_3, v_4, v_5\} \subseteq \mathbb{R}^4$. Ferner sei die lineare Abbildung

$$f: V \to \mathbb{R}^4$$
, $f(x) = A \cdot x$, mit $A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ 2 & 3 & 1 & -2 \\ 3 & 4 & 1 & -4 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$

gegeben.

- a) Man bestimme die Dimension von V und gebe eine Basis von V an.
- b) Man berechne die darstellende Matrix von f bezüglich der in a) gewählten Basis von V und der Standardbasis von \mathbb{R}^4 .
- c) Man bestimme eine Basis des Kerns von f.

Fortsetzung nächste Seite!

Aufgabe 3:

Man betrachte einen \mathbb{R} -Vektorraum V mit $V \neq \{0_V\}$ sowie eine lineare Abbildung $f: V \to V$. Man zeige:

- a) f ist genau dann injektiv, wenn $\lambda = 0$ kein Eigenwert von f ist.
- b) Ist f bijektiv und $v \in V$ ein Eigenvektor von f zum Eigenwert $\lambda \in \mathbb{R}$, so ist v ein Eigenvektor von f^{-1} zum Eigenwert λ^{-1} .
- c) Ist $\dim(V) < \infty$ sowie f bijektiv und diagonalisierbar, so ist auch f^{-1} diagonalisierbar.

Aufgabe 4:

In der euklidischen Ebene \mathbb{R}^2 seien die Vektoren

$$a = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \quad \text{und} \quad c = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

sowie

$$a' = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad b' = \begin{pmatrix} -1 \\ 3 \end{pmatrix} \quad \text{und} \quad c' = \begin{pmatrix} -2 \\ s \end{pmatrix}$$

gegeben; dabei ist $s \in \mathbb{R}$ ein reeller Parameter.

a) Man zeige, dass es genau eine affine Abbildung $f_s: \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$f_s(a) = a',$$
 $f_s(b) = b'$ und $f_s(c) = c'$

gibt, und gebe ihre Abbildungsvorschrift explizit an.

b) Für welchen Wert von $s \in \mathbb{R}$ ist f_s eine Bewegung? Man zeige, dass in diesem Fall f_s eine Drehung ist, und bestimme das Drehzentrum und den Drehwinkel von f_s .

Aufgabe 5:

In der euklidischen Ebene \mathbb{R}^2 sind die beiden Quadriken

$$Q_1 = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid x^2 - 4xy - 2y^2 = 6 \right\}$$

und

$$Q_2 = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid 3x^2 + 6xy - 5y^2 = 12 \right\}$$

gegeben.

- a) Man zeige mit Hilfe der euklidischen Normalform, dass Q_1 und Q_2 euklidisch äquivalent sind.
- b) Man bestimme eine Bewegung $f: \mathbb{R}^2 \to \mathbb{R}^2$ mit $f(Q_1) = Q_2$.