Thema Nr. 3 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

In \mathbb{R}^n bezeichnen e_1, \ldots, e_n die Standardbasisvektoren.

Aufgabe 1:

Sei
$$\begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2 \setminus \{0\}$$
 beliebig.

a) Rechnen Sie nach, dass

$$f: \mathbb{R}^2 \to \mathbb{R}, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \det \begin{pmatrix} x & a \\ y & b \end{pmatrix}$$

und

$$g: \mathbb{R}^2 \to \mathbb{R}, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \left\langle \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} a \\ b \end{pmatrix} \right\rangle$$

(Standardskalarprodukt) R-linear sind.

- b) Zeigen Sie, dass f und g als Funktionen von \mathbb{R}^2 nach \mathbb{R} linear unabhängig sind.
- c) Schreiben Sie

$$\pi: \mathbb{R}^2 \to \mathbb{R}: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto x$$

als Linearkombination von f und g.

Aufgabe 2:

Bestimmen Sie alle reellen 3×3 -Matrizen A, welche folgende drei Bedingungen erfüllen:

 e_1 ist ein Eigenvektor von A zum Eigenwert 1,

 $e_1 + e_2$ ist ein Eigenvektor von A zum Eigenwert 2,

 $e_1 + e_2 + e_3$ ist ein Eigenvektor von A zum Eigenwert 3.

Aufgabe 3:

a) Bestimmen Sie bezüglich des Standardskalarproduktes eine Orthornormalbasis des Untervektorraums

$$U := \operatorname{span} \left\{ \begin{pmatrix} -5 \\ -5 \\ -5 \\ -5 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 \\ -2 \\ 1 \\ -2 \end{pmatrix} \right\}$$

von \mathbb{R}^4 .

b) Bezüglich eines Skalarproduktes σ auf \mathbb{R}^2 gelte

$$||e_1||_{\sigma} = 3,$$
 $||e_2||_{\sigma} = 2,$ $||2e_1 - 3e_2||_{\sigma} = 6.$

Berechnen Sie den Winkel zwischen e_1 und e_2 bezüglich $\sigma.$

Aufgabe 4:

Betrachten Sie zu einem Parameter $t \in \mathbb{R}$ die durch

$$b_{t}\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{5} \cdot \begin{pmatrix} 4x + 3y + 12t - 13 \\ 3x - 4y + 14t - 11 \end{pmatrix}$$

gegebene Abbildung $b_t : \mathbb{R}^2 \to \mathbb{R}^2$.

- a) Zeigen Sie, dass b_t eine Bewegung der euklidischen Ebene ist.
- b) Zeigen Sie, dass b_t für jedes t entweder eine Spiegelung an einer Geraden oder eine Gleitspiegelung ist, und bestimmen Sie in jedem Fall die Spiegelungsachse und zusätzlich falls eine Gleitspiegelung vorliegt den zur Spiegelungsachse parallelen Verschiebungsvektor.

Aufgabe 5:

Sei E die durch

$$7x^2 + 5y^2 + 2\sqrt{3} \cdot xy + (8\sqrt{3} - 14)x + (8 - 2\sqrt{3})y = 8\sqrt{3} - 11$$

in \mathbb{R}^2 definierte Quadrik. Bestimmen Sie den Mittelpunkt, die metrische (euklidische) Normalform und den Typ von E.