Thema Nr. 3 (Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Aufgabe 1:

Es sei

$$A_{\alpha} = \begin{pmatrix} \alpha & 0 & 0 & 1 - \alpha \\ 1 & 1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & 1 & -1 & -1 \end{pmatrix}, B_{\alpha} = A_{\alpha}A_{\alpha}^{\top} \text{ und } b = \begin{pmatrix} 3 \\ -1 \\ -2 \\ -4 \end{pmatrix}.$$

- a) F¨ur welche α ∈ ℝ hat die Gleichung Bαx = b eine eindeutige L¨osung?
- b) Nun sei α = 1. Bestimmen Sie die Lösung der Gleichung B₁x = b.

Aufgabe 2:

Es sei R^{3×3} der Vektorraum der reellen 3×3 Matrizen. Weiter sei

$$M = \{A \in \mathbb{R}^{3 \times 3} \mid \det(A) = 0\}$$
 und $N = \{A \in \mathbb{R}^{3 \times 3} \mid A^{\top} = -A\}.$

- a) Untersuchen Sie, ob M bzw. N einen Unterraum von $\mathbb{R}^{3\times3}$ bilden.
- b) Untersuchen Sie, ob N eine Teilmenge von M ist, bzw. ob M eine Teilmenge von N ist.

Aufgabe 3:

Für $\alpha \in \mathbb{R} \setminus \{0\}$ seien durch

$$E_{\alpha} = \begin{pmatrix} 2 \\ 2 \\ 1 \\ 1 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 2 \\ 2 \\ 2 \\ 0 \end{pmatrix} + \mathbb{R} \begin{pmatrix} \alpha \\ 0 \\ \alpha \\ \alpha \end{pmatrix} \text{ und } F_{\alpha} = \begin{pmatrix} \alpha \\ \alpha \\ 0 \\ \alpha \end{pmatrix} + \mathbb{R} \begin{pmatrix} 2 \\ 1 \\ 0 \\ -1 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$$

Ebenen in \mathbb{R}^4 definiert. Bestimmen Sie alle $\alpha \in \mathbb{R}$ für die sich E_α und F_α schneiden.

Aufgabe 4:

Es sei A die Menge der affinen Abbildungen $f: \mathbb{R}^2 \to \mathbb{R}^2$. Beweisen oder widerlegen Sie:

- a) Ist b_1, b_2 eine Basis von \mathbb{R}^2 und sind $f, g \in A$ mit $f(b_1) = g(b_1)$ und $f(b_2) = g(b_2)$, dann folgt f = g.
- b) Ist $f \in A$ und gilt $f(\lambda x) = \lambda f(x)$ für jedes $x \in \mathbb{R}^2$ und jedes $\lambda \in \mathbb{R}$, so ist f eine lineare Abbildung.

Aufgabe 5:

Es seien $A \in \mathbb{R}^{n \times n}$ und $B \in \mathbb{R}^{n \times n}$ symmetrische Matrizen. Weiter habe A den Rang n und B sei positiv definit, d.h. für jedes $x \in \mathbb{R}^n \setminus \{0\}$ gelte $x^\top Bx > 0$. Zeigen Sie, dass die Bilinearform $f(x, y) = x^\top ABAy$ ein Skalarprodukt auf \mathbb{R}^n ist.