Thema Nr. 1

Einzelprüfungsnummer: 43911

(Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

Aufgabe 1:

Für $a, b, c \in \mathbb{R}$ sei

$$A_{a,b,c} = \begin{pmatrix} a & 1 & b & 2 \\ 0 & 0 & c & 3 \\ & & & \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

- a) Bestimmen Sie alle $a, b, c \in \mathbb{R}$, so dass $\det(A_{a,b,c}) = 0$.
- b) Bestimmen Sie alle $a, b, c \in \mathbb{R}$, so dass Rang $A_{a,b,c} = 3$.

Aufgabe 2:

Es sei V der Vektorraum der reellen 3×3 Matrizen. Gegeben sei die Matrix

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right) .$$

- a) Berechnen Sie A^{2012} .
- b) Zeigen Sie, dass die Matrizen A und $A-A^2$ jeweils nur einen reellen Eigenwert haben und zeigen Sie ferner, dass die dazugehörenden Eigenvektoren übereinstimmen.
- c) Es sei U der von den Matrizen A,A^2 und A^3 aufgespannte Unterraum von V. Finden Sie ein $x\in\mathbb{R}^3$, welches Eigenvektor zu jedem $B\in U$ ist.

Aufgabe 3:

Es sei V der Vektorraum der reellen 2×2 -Matrizen. Auf V werde eine Abbildung

$$\Phi: V \to V \quad \text{durch} \quad A \mapsto \left(\begin{array}{cc} 0 & 1 \\ & & \\ 1 & 0 \end{array} \right) A \left(\begin{array}{cc} 0 & 1 \\ & & \\ 1 & 0 \end{array} \right)$$

definiert.

a) Zeigen Sie, dass Φ eine lineare Abbildung ist.

- b) Bestimmen Sie den Kern und das Bild von Φ .
- c) Es sei *U* der Unterraum

$$U := \left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \middle| a, b, c \in \mathbb{R} \right\}.$$

Bestimmen Sie die Dimensionen der Unterräume $\Phi(U)$, $U \cap \Phi(U)$ und $U + \Phi(U)$.

Aufgabe 4:

a) Die Ebenen E_1 und E_2 sind im \mathbb{R}^3 gegeben als die Menge aller Vektoren $(x, y, z)^t$, die

$$E_1 : x + y + z = 1$$
 und $E_2 : x - y + z = -1$

genügen. Berechnen Sie eine Parameterform von $E_1 \cap E_2$.

b) Es sei P die Menge aller Punkte $p \in \mathbb{R}^3$, die von E_1 und E_2 denselben Abstand haben. Zeigen Sie, dass P die Vereinigung zweier Ebenen ist und bestimmen Sie eine Parameterform dieser beiden Ebenen.

Aufgabe 5:

 $\overline{\text{Für }\lambda \in \mathbb{R} \text{ sei } q_{\lambda} : \mathbb{R}^2 \to \mathbb{R} \text{ definiert durch}}$

$$q_{\lambda}(x,y) = 2x^2 + \lambda xy + 3y^2$$

sowie

$$Q_{\lambda} = \{(x, y)^{\mathsf{t}} \in \mathbb{R}^2 : q_{\lambda}(x, y) = 8\}.$$

- a) Bestimmen Sie den Typ des Kegelschnittes Q_{λ} in Abhängigkeit von $\lambda.$
- b) Bringen Sie den Kegelschnitt $Q_{3/4}$ (also $\lambda = 3/4$) mit Hilfe einer abstandserhaltenden Bewegung auf Normalform. Geben Sie eine Transformationsmatrix explizit an und bestimmen Sie die Halbachsen.