Thema Nr. 1 (Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Aufgabe 1:

Im \mathbb{R} –Vektorraum V aller Polynome mit reellen Koeffizienten seien

$$u_1 = X^3 + X^2$$
, $u_2 = X^2 + X$ und $u_3 = X + 1$

sowie

$$w_1 = X^3 - X^2 + X$$
 und $w_2 = X^2 - X + 1$

gegeben; ferner seien $U=\langle u_1,u_2,u_3\rangle$ und $W=\langle w_1,w_2\rangle$ die von u_1,u_2,u_3 bzw. von w_1,w_2 erzeugten Unterräume von V. Man bestimme eine Basis des Unterraums $U\cap W$.

Aufgabe 2:

Für die reelle 3×4 –Matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 5 \\ 0 & 1 & 2 & 3 \\ 3 & -1 & -5 & 3 \end{pmatrix} \in \mathbb{R}^{3 \times 4}$$

betrachte man die zugehörige lineare Abbildung

$$f: \mathbb{R}^4 \to \mathbb{R}^3, \quad f(x) = A \cdot x;$$

es seien U = Kern(f) der Kern von f sowie W = Bild(f) der Bildraum von f.

- a) Man zeige, dass sowohl U als auch W die Dimension 2 besitzt, und bestimme eine Basis von U sowie eine Basis von W.
- b) Man ermittle eine Basis von \mathbb{R}^4 und eine Basis von \mathbb{R}^3 , so dass f bezüglich dieser Basen die darstellende Matrix

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \mathbb{R}^{3 \times 4}$$

besitzt.

Aufgabe 3:

Für $n \in \mathbb{N}$ mit $n \geq 2$ werde eine reelle $n \times n$ -Matrix B betrachtet; es bezeichne B^{\top} die zu B transponierte Matrix. Man beweise oder widerlege:

- a) Ist $l \in \mathbb{R}$ ein Eigenwert von B, so auch von B^{\top} .
- b) Ist $x \in \mathbb{R}^n$ ein Eigenvektor von B, so auch von B^{\top} .
- c) Ist B diagonalisierbar, so auch B^{\top} .

Aufgabe 4:

Man zeige, dass es auf dem reellen Vektorraum \mathbb{R}^2 genau ein Skalarprodukt $\sigma: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ gibt, bezüglich dem die Vektoren $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ und $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ eine Orthonormalbasis bilden, und gebe $\sigma(x,y)$ für x, $y \in \mathbb{R}^2$ explizit an.

Aufgabe 5:

Für welche Wahl des Parameters $s \in \mathbb{R}$ ist der Kegelschnitt

$$P = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mid x^2 + 2 s x y + y^2 + 2 x + 2 y + 1 = 0 \right\}$$

eine Parabel? Man bestimme für diesen Parameterwert die euklidische Normalform, den Scheitel und die Symmetrieachse der Parabel P und skizziere sie im x-y-Koordinatensystem.