Thema Nr. 3 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

1. Aufgabe

Wir betrachten den reellen Vektorraum \mathbb{R}^3 versehen mit dem euklidischen Standardskalarprodukt. Die Abbildung $\mathbb{R}^3 \to \mathbb{R}^3$, $x \mapsto A \cdot x$ mit $A \in \mathbb{R}^{3 \times 3}$ beschreibe die orthogonale Projektion auf den Untervektorraum

$$U = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\} \subset \mathbb{R}^3.$$

Sei U^{\perp} das orthogonale Komplement von U in \mathbb{R}^3 .

- a) Bestimmen Sie U^{\perp} .
- b) Bestimmen Sie die Matrix A.
- c) Bestimmen Sie $v\in\mathbb{R}^3$, sodass $\begin{pmatrix} 0\\0\\3 \end{pmatrix} + U^\perp \text{ die Lösungsmenge des linearen Gleichungssystems}$ $A\cdot x=v \text{ ist.}$

2. Aufgabe

Es bezeichne $R_{\varphi} \in \mathbb{R}^{2 \times 2}$ die orthogonale Matrix, welche die Drehung des \mathbb{R}^2 um den Ursprung mit Drehwinkel φ (im positiven Drehsinn) beschreibt. Sei $E_2 \in \mathbb{R}^{2 \times 2}$ die Einheitsmatrix.

- a) Zeigen Sie: Für $\varphi \in]0, \, 2\pi[$ ist die Matrix $E_2 R_{\varphi}$ invertierbar.
- b) Seien $\varphi \in]0, 2\pi[$ und $t \in \mathbb{R}^2$ und sei

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \ x \mapsto R_{\varphi} \cdot x + t.$$

Zeigen Sie, dass f genau einen Fixpunkt $p \in \mathbb{R}^2$ hat. Was ist die geometrische Bedeutung dieses Fixpunktes p?

c) Sei $R=R_{\frac{\pi}{4}}\in\mathbb{R}^{2\times 2}$ die Matrix der Drehung mit Drehwinkel $\frac{\pi}{4}$. Sei

$$g: \mathbb{R}^2 \to \mathbb{R}^2, \ x \mapsto R \cdot x + t,$$

wobei $t \in \mathbb{R}^2$, und sei

$$h: \mathbb{R}^2 \to \mathbb{R}^2, \ x \mapsto R \cdot x.$$

Bestimmen Sie
$$t \in \mathbb{R}^2$$
 so, dass $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ das Drehzentrum von $g \circ h$ ist.

3. Aufgabe

Ist A eine Matrix, dann bezeichnet A^{\top} die transponierte Matrix von A. Beweisen oder widerlegen Sie:

- a) Ist $M \in \mathbb{R}^{2 \times 2}$ eine symmetrische Matrix und ist $B \in \mathbb{R}^{2 \times 2}$, dann ist $B^{\top}MB$ diagonalisierbar.
- b) Ist $M \in \mathbb{R}^{2 \times 2}$ eine symmetrische Matrix und ist $B \in \mathbb{R}^{2 \times 2}$ eine invertierbare Matrix, dann ist M ähnlich zu $B^{\top}MB$.
- c) Ist $M \in \mathbb{R}^{2\times 2}$ symmetrisch und positiv definit und ist $B \in \mathbb{R}^{2\times 2}$ invertierbar, dann ist $B^{\top}MB$ positiv definit.

4. Aufgabe

Sei V ein reeller Vektorraum und sei $f:V\to V$ eine lineare Abbildung. Für eine natürliche Zahl $n\in\mathbb{N}\setminus\{0\}$ setzen wir $f^n=\underbrace{f\circ f\circ\cdots\circ f}_{n-\mathrm{mal}}$. Ferner definieren wir $f^0:=\mathrm{id}$, wobei id: $V\to V$ die Identitätsabbildung ist.

- a) Zeigen Sie: Ist f injektiv, dann gilt $\operatorname{Kern}(f^n) = \{0\}$ für alle $n \in \mathbb{N}$.
- b) Sei $n \in \mathbb{N}$ und sei $v \in \text{Kern}(f^{n+1})$ mit $v \notin \text{Kern}(f^n)$. Zeigen Sie: Die Vektoren $f^0(v), f^1(v), f^2(v), \dots, f^n(v)$ sind linear unabhängig.

5. Aufgabe

Gegeben seien die Quadriken

$$Q = \{(x, y)^{\top} \in \mathbb{R}^2 : 2x^2 + y^2 - 4x + 6y + 7 = 0\}$$

und

$$\tilde{Q} = \{(x, y)^{\top} \in \mathbb{R}^2 : x^2 + 2y^2 - 4 = 0\}.$$

Bestimmen Sie eine Gleitspiegelung $f: \mathbb{R}^2 \to \mathbb{R}^2$ mit $f(Q) = \tilde{Q}$.