Thema Nr. 3 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

1. Aufgabe

Zu $\alpha \in \mathbb{R}$ sei

$$A_{\alpha} = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 0 & \alpha & \alpha \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 1 & 2 \end{pmatrix}, \quad c_{\alpha} = \begin{pmatrix} \alpha \\ 3 \\ 5 \\ 2 \end{pmatrix} \quad \text{und} \quad C_{\alpha} = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

- a) Bestimmen Sie $\det(A_{\alpha})$.
- b) Es sei $b_{\alpha} = A_{\alpha}c_{\alpha}$. Untersuchen Sie, ob die Gleichung $A_{\alpha}x = b_{\alpha}$ endlich oder unendlich viele Lösungen hat.
- c) Zeigen Sie, dass die Matrizen A_{α} und C_{α} für kein $\alpha \in \mathbb{R}$ ähnlich sind.

2. Aufgabe

Gegeben seien die Vektoren

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, v_2 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \text{ und } x = \begin{pmatrix} 6 \\ 3 \\ 4 \end{pmatrix}.$$

Die Matrix $A \in \mathbb{R}^{3\times 3}$ habe den Eigenvektor v_1 zum Eigenwert 2, den Eigenvektor v_2 zum Eigenwert -2 und den Eigenvektor v_3 zum Eigenwert 4. Bestimmen Sie den Vektor Ax.

3. Aufgabe

Es seien α, β zwei reelle Parameter. Wir betrachten die reellen Matrizen

$$A_{\alpha,\beta} = \begin{pmatrix} \alpha & 0 \\ \beta & 0 \end{pmatrix} \quad \text{und} \quad B_{\beta} = \begin{pmatrix} 1 & \beta \\ 0 & 0 \end{pmatrix}$$

und die lineare Abbildung

$$\Phi_{\alpha,\beta}: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}, \ X \mapsto XA_{\alpha,\beta} - B_{\beta}X^{\top}.$$

Bestimmen Sie den Rang von $\Phi_{\alpha,\beta}$ in Abhängigkeit von $(\alpha,\beta) \in \mathbb{R}^2$.

4. Aufgabe

Gegeben seien die Gerade

$$g = \begin{pmatrix} -1 \\ 0 \end{pmatrix} + \mathbb{R} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

und die Abbildung

$$\phi: \mathbb{R}^2 \to \mathbb{R}^2, \ x \mapsto \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} x + \frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

- a) Zeigen Sie, dass ϕ eine Kongruenzabbildung (Euklidische Bewegung) ist, und bestimmen Sie den Typ dieser Bewegung.
- b) Bestimmen Sie im Fall einer Translation den Translationsvektor, im Fall einer Drehung den Drehmittelpunkt, im Fall einer Spiegelung die Spiegelachse und im Fall einer Schubspiegelung den Schubvektor.
- c) Zeigen Sie, dass sich die Geraden g und $\phi(g)$ in genau einem Punkt P schneiden, und bestimmen Sie diesen.

5. Aufgabe

Es sei $A \in \mathbb{R}^{2 \times 2}$ mit $A \neq 0$ und $d = \det(A)$. Wir betrachten die Quadrik

$$Q = \{ x \in \mathbb{R}^2 \mid x^\top A^\top A x = d \}.$$

Bestimmen Sie den Typ der Quadrik in Abhängigkeit von d.