Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

1. Aufgabe

Gegeben sei die Matrix

$$M = \begin{pmatrix} 5 & 3 & -9 \\ 3 & 5 & -9 \\ 3 & 3 & -7 \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

- a) Zeigen Sie, dass 2 ein Eigenwert von M ist, und bestimmen Sie den zugehörigen Eigenraum.
- b) Zeigen Sie, dass M diagonalisierbar ist, und geben Sie eine Basis des \mathbb{R}^3 bestehend aus Eigenvektoren von M an.

2. Aufgabe

Es sei $P: \mathbb{R}^3 \to \mathbb{R}^3$ eine Projektion, also eine lineare Abbildung, die

$$P \circ P = P$$

erfüllt.

a) Zeigen Sie

$$P(y) = y$$

für alle $y \in Bild(P) = \{P(x) : x \in \mathbb{R}^3\}.$

b) Geben Sie die Darstellungsmatrix (bzgl. der kanonischen Basis (e_1, e_2, e_3)) derjenigen Projektion an, die

$$\operatorname{Bild}(P) = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 : x_1 - 2x_3 = 0 \right\} \quad \text{und} \quad P(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}) = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

erfüllt.

3. Aufgabe

Es bezeichne Δ das Dreieck im \mathbb{R}^2 mit den Eckpunkten

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ und } \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Bestimmen Sie alle Skalarprodukte auf dem \mathbb{R}^2 , bezüglich denen Δ ein gleichseitiges Dreieck ist. (Die Längen und Winkel werden also von dem entsprechenden Skalarprodukt induziert.)

4. Aufgabe

Es seien s und t reelle Parameter sowie

$$u_{1} = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 3 \end{pmatrix}, \quad u_{2} = \begin{pmatrix} 1 \\ -s \\ 2 \\ 3 \end{pmatrix}, \quad u_{3} = \begin{pmatrix} -1 \\ 3 \\ s-2 \\ -3 \end{pmatrix}, \quad u_{4} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ s+3 \end{pmatrix} \in \mathbb{R}^{4}$$

und

$$w_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad w_{2} = \begin{pmatrix} 2 \\ 2 \\ 4 \\ -1 \\ 1 \end{pmatrix}, \quad w_{3} = \begin{pmatrix} 2 \\ t \\ 4 \\ -1 \\ 1 \end{pmatrix}, \quad w_{4} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ t \\ -2 \\ 0 \end{pmatrix} \in \mathbb{R}^{5}.$$

Es bezeichne U_s den von u_1, u_2, u_3, u_4 aufgespannten Untervektorraum des \mathbb{R}^4 und W_t den von w_1, w_2, w_3, w_4 aufgespannten Untervektorraum des \mathbb{R}^5 .

- a) Bestimmen Sie die Dimensionen von U_s und W_t in Abhängigkeit von s bzw. t.
- b) Zeigen oder widerlegen Sie:
 - i) Für jedes $t \in \mathbb{R}$ existiert ein $s \in \mathbb{R}$ mit $\dim(U_s) = \dim(W_t)$.
 - ii) Für jedes $s \in \mathbb{R}$ existiert ein $t \in \mathbb{R}$ mit $\dim(U_s) = \dim(W_t)$.

5. Aufgabe

Es sei α ein reeller Parameter. Gegeben seien die Kegelschnitte

$$H = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : x \cdot y = 1 \right\}$$

und

$$Q_{\alpha} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : \alpha^2 x^2 + 4\alpha xy + (4-\alpha)y^2 - \alpha - 2 = 0 \right\}.$$

- a) Bestimmen Sie den affinen Typ von Q_{α} in Abhängigkeit von $\alpha.$
- b) Geben Sie für die
jenigen $\alpha \in \mathbb{R}$, für die H und Q_{α} affin äquivalent sind, eine Affinität

 (= bijektive affine Abbildung) $f_{\alpha} : \mathbb{R}^2 \to \mathbb{R}^2$ an, die Q_{α} auf H abbildet.