Thema Nr. 3 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

Aufgabe 1

Entscheiden Sie, ob die folgenden Reihen absolut konvergieren, konvergieren oder divergieren.

(a)

$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

(b)

$$\sum_{n=1}^{\infty} \frac{n}{1+n^2}$$

Aufgabe 2

Sei $f:]-2,1[\to \mathbb{R}$ definiert durch

$$f(x) = 2x^3 + 3x^2 - 12x.$$

- (a) Ermitteln Sie $W_f = f(] 2, 1[)$.
- (b) Zeigen Sie, dass f eine differenzierbare Umkehrfunktion $f^{-1}:W_f\to\mathbb{R}$ hat, und berechnen Sie die Ableitung von f^{-1} im Punkt y=0.

Aufgabe 3

(a) Sei die Funktion $h:]0, \infty[\to \mathbb{R}$ definiert durch

$$h(x) = 1 + \ln(x).$$

Zeigen Sie, dass die Funktion $f:]0, \infty[\to \mathbb{R}$, definiert durch

$$f(x) = h(x) - x,$$

im Intervall $]0, \infty[$ genau eine Nullstelle im Punkt x = 1 hat und dass f(x) < 0 für alle x > 1 gilt.

(b) Zeigen Sie, dass die rekursiv definierte Folge $(x_n)_{n\in\mathbb{N}_0}$ mit

$$x_{n+1} = 1 + \ln(x_n) = h(x_n)$$

mit dem Anfangswert $x_0 = 2$ streng monoton fallend gegen 1 konvergiert.

Aufgabe 4

Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ heißt gerade, wenn f(x) = f(-x) für alle $x \in \mathbb{R}$ gilt, und ungerade, wenn f(x) = -f(-x) für alle $x \in \mathbb{R}$ gilt.

Sei $f: \mathbb{R} \to \mathbb{R}$ un
endlich oft differenzierbar und gerade. Beweisen Sie, dass für all
e $n \in \mathbb{N}$ die Funktionen $f^{(2n-1)}$ ungerade und die Funktionen
 $f^{(2n)}$ gerade sind.

Aufgabe 5

Lösen Sie das Anfangswertproblem

$$y'(x) = x \cdot (y(x)^2 + y(x) - 2), \quad y(0) = 0,$$

und geben Sie das maximale Definitionsintervall der Lösung an.