Thema Nr. 1 (Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Aufgabe 1

(a) Zeigen Sie: Für alle $n \in \mathbb{N}$ mit $n \geq 2$ gilt:

$$\sum_{k=2}^{n} \frac{1}{k(k^2 - 1)} = \frac{1}{4} - \frac{1}{2n(n+1)}.$$

(b) Untersuchen Sie die Reihe

$$\sum_{n=2}^{\infty} \frac{1}{n(n^2-1)}$$

auf Konvergenz und bestimmen Sie gegebenenfalls ihre Summe.

Aufgabe 2

Betrachten Sie die Funktion $f_{m,t}: \mathbb{R} \to \mathbb{R}$ mit

$$f_{m,t}(x) = \begin{cases} \cos(\sqrt{x}), & \text{für } x \ge 0, \\ mx + t, & \text{für } x < 0, \end{cases}$$

in Abhängigkeit von den reellen Parametern $m, t \in \mathbb{R}$.

- (a) Bestimmen Sie alle Werte $m, t \in \mathbb{R}$, für die die Funktion $f_{m,t}$ stetig ist.
- (b) Ermitteln Sie, für welche Werte von $m, t \in \mathbb{R}$ die Funktion $f_{m,t}$ sogar differenzierbar ist! Bestimmen Sie in diesem Fall die Ableitung $f'_{m,t}$ von $f_{m,t}$.

Aufgabe 3

Auf der Menge $D_f=]0,+\infty[$ betrachte man die Funktion $f:D_f\to\mathbb{R}$ mit

$$f(x) = \frac{1}{x} + \arctan(x).$$

- (a) Untersuchen Sie f auf Monotonie und bestimmen Sie $W_f = f(D_f)$.
- (b) Zeigen Sie, dass die Ungleichung

$$|f(b) - f(a)| < \frac{b-a}{2}$$

für alle $1 \le a < b$ gilt.

(c) Zeigen Sie, dass f eine differenzierbare Umkehrabbildung $f^{-1}:W_f\to\mathbb{R}$ besitzt, und bestimmen Sie die Ableitung

 $(f^{-1})'\left(1+\frac{\pi}{4}\right)$.

Aufgabe 4

(a) Skizzieren Sie die Menge

$$K = \{(x, y) \in \mathbb{R}^2 : x^2 \le y \text{ und } y^2 \le x\}$$

und bestimmen Sie ihren Flächeninhalt.

(b) Gegeben sei die Funktion $f:K\to\mathbb{R}$ mit

$$f(x,y) = (y - x^2)(x - y^2)$$

auf der Menge $K \subseteq \mathbb{R}^2$ von Teilaufgabe (a). Zeigen Sie, dass f im Innern von K genau einen kritischen Punkt besitzt, und geben Sie diesen Punkt an.

(c) Begründen Sie, warum es sich bei dem in Teilaufgabe (b) bestimmten Punkt um eine globale Maximalstelle der Funktion f auf K handelt.

Aufgabe 5

Betrachten Sie die homogene lineare Differentialgleichung dritter Ordnung

$$y'''(x) + 2y''(x) + ry'(x) + 2ry(x) = 0 \quad (\star)$$

mit konstanten Koeffizienten. Dabei ist $r \in \mathbb{R}$ ein reeller Parameter.

(a) Zeigen Sie durch Rechnung, dass die Funktion $\phi: \mathbb{R} \to \mathbb{R}$ mit

$$\phi(x) = e^{-2x}$$

unabhängig von $r \in \mathbb{R}$ eine Lösung von (\star) ist.

(b) Bestimmen Sie, in Abhängigkeit von $r \in \mathbb{R}$, ein reelles Fundamentalsystem von (\star) .