Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

Aufgabe 1

Sei $x_1 \in]0,1[$ und sei die Folge $(x_n)_{n\in\mathbb{N}}$ durch

$$x_{n+1} = \frac{x_n + x_n^3 - x_n^5}{2}$$

für $n \in \mathbb{N}$, $n \ge 1$, rekursiv definiert.

(a) Zeigen Sie

$$0 < x_n < 1$$
 für alle $n \in \mathbb{N}, n \ge 1$.

(b) Zeigen Sie, dass die Folge $(x_n)_{n\in\mathbb{N}}$ konvergiert, und bestimmen Sie den Grenzwert.

Aufgabe 2

Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} \frac{\sin(x) - x}{x^2}, & \text{für } x \neq 0, \\ 0, & \text{für } x = 0. \end{cases}$$

Zeigen Sie, dass f stetig differenzierbar ist.

Aufgabe 3

Sei $f:[0,1]\to\mathbb{R}$ definiert durch

$$f(x) = \int_0^{1+x} \frac{y-1}{1+(y-1)^{2018}} \, dy - \int_0^{1-x} \frac{y-1}{1+(y-1)^{2018}} \, dy$$

- (a) Bestimmen Sie die Ableitung von f.
- (b) Bestimmen Sie das Integral

$$\int_0^2 \frac{y-1}{1+(y-1)^{2018}} \, dy.$$

Aufgabe 4

Sei

$$K = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 1 \le y \le e^x\}$$

und $f:K\to\mathbb{R}$ definiert durch

$$f(x,y) = x - 2xy + \ln(y).$$

- (a) Skizzieren Sie K.
- (b) Bestimmen Sie die globalen Extremalstellen von f auf K.

Aufgabe 5

Bestimmen Sie $a \in \mathbb{R}$, so dass die Lösung des Anfangswertproblems

$$y''(x) - y(x) = -x + 1$$

 $y(0) = 1, y'(0) = a$

die Bedingung

$$y(1) = 2e$$

erfüllt.