Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

Aufgabe 1:

Die Folge $(a_n)_{n\in\mathbb{N}}$ sei rekursiv definiert durch

$$a_1 \in [0, 1]$$
 und $a_{n+1} = \cos(1 - a_n)$ für alle $n \ge 1$.

a) Zeigen Sie, dass die Funktion $f:[0,1] \to \mathbb{R}$,

$$f(x) = \cos(1 - x) - x$$

streng monoton fallend ist, und bestimmen Sie alle Nullstellen der Funktion f.

- b) Zeigen Sie, dass $0 \le a_n \le 1$ für alle $n \in \mathbb{N}$ gilt.
- c) Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}}$ monoton steigend ist.
- d) Zeigen Sie, dass die Folge $(a_n)_{n\in\mathbb{N}}$ gegen 1 konvergiert.

Aufgabe 2:

a) Zeigen Sie (zum Beispiel unter Verwendung der Additionstheoreme), dass für alle $\alpha, \beta, \gamma \in \mathbb{R}$ die folgende Gleichheit gilt:

$$\sin(\alpha + \beta + \gamma) =$$

 $\sin(\alpha)\cos(\beta)\cos(\gamma) - \sin(\alpha)\sin(\beta)\sin(\gamma) + \cos(\alpha)\sin(\beta)\cos(\gamma) + \cos(\alpha)\cos(\beta)\sin(\gamma).$

b) Zeigen Sie mit Hilfe von a), dass

$$\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

gilt.

Hinweis: Sie dürfen $\sin(\pi) = 0$ und $\sin(x) > 0$ für alle $x \in]0, \pi[$ verwenden.

Aufgabe 3:

Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \frac{2e^{2x} + 5e^x}{e^{2x} + 4e^x + 5}.$$

Geben Sie eine Stammfunktion von f an und begründen Sie Ihr Vorgehen.

Aufgabe 4:

Gegeben sei die Funktion $f:]0, \infty[\times]0, \infty[\to \mathbb{R}$ definiert durch

$$f(x,y) = x - x^y.$$

- a) Zeigen Sie, dass (1,1) der einzige kritische Punkt von f ist.
- b) Untersuchen Sie, ob im Punkt (1,1) ein lokales Extremum oder ein Sattelpunkt der Funktion f vorliegt.

Aufgabe 5:

Gegeben seien die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \exp(-x^2)$$

sowie die Differentialgleichung

$$y'''(x) - 2y''(x) + y'(x) = \exp(-x^2)(-8x^3 - 8x^2 + 10x + 4).$$
 (D)

- a) Zeigen Sie, dass f eine Lösung von (D) ist.
- b) Bestimmen Sie alle Lösungen $\psi : \mathbb{R} \to \mathbb{R}$ von (D), die

$$\psi(0) = 0$$
 und $\psi'(0) = -1$

erfüllen.