Prüfungsteilnehmer	Prüfungs	termin	Einzelprüfungsnummer
Kennzahl:	Frühj		43910
Arbeitsplatz-Nr.:		2025	
Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen — Prüfungsaufgaben —			
Fach: Mathematik (Unterrichtsfach)			
Einzelprüfung: Differential- und Integralrechnung			
Anzahl der gestellten Themen (Aufgaben): 3			
Anzahl der Druckseiten dieser Vorlage: 7			

Bitte wenden!

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

Aufgabe 1:

- a) Beweisen Sie, dass $4^n>n^2$ für alle natürlichen Zahlen $n\geq 1$ gilt.
- b) Zeigen Sie, dass die Folge $(a_n)_{n\in\mathbb{N}}$ mit

$$a_n = \frac{n}{4^n}$$

konvergiert und berechnen Sie ihren Grenzwert.

c) Zeigen Sie, dass die Folge $(b_n)_{n\in\mathbb{N}}$ mit

$$b_n = \frac{4^n}{1 + n + 4^n}$$

konvergiert und berechnen Sie ihren Grenzwert.

Aufgabe 2:

a) Beweisen Sie

$$\left(\sqrt{x^2 + \frac{1}{n}} + x\right)\left(\sqrt{x^2 + \frac{1}{n}} - x\right) = \frac{1}{n}$$

für alle $x \in \mathbb{R}$.

b) Sei

$$f_n(x) = \sqrt{x^2 + \frac{1}{n}}$$

für $n \in \mathbb{N}, x \in \mathbb{R}$.

Berechnen Sie den Grenzwert

$$f(x) = \lim_{n \to \infty} f_n(x)$$

für beliebiges $x \in \mathbb{R}$.

c) Berechnen Sie

$$\sup \{ |f_n(x) - f(x)| : x \in [0, \infty[] \}$$

in Abhängigkeit von $n \in \mathbb{N}$.

Aufgabe 3:

Für $n \in \mathbb{N}$ sei I_n definiert durch

$$I_n := \int_{0}^{\sqrt{\pi}} x^n \cdot \sin(x^2) \, dx.$$

- a) Berechnen Sie I_1 .
- b) Beweisen Sie

$$I_n = \frac{2}{(n+1)(n+3)} \left(\pi^{\frac{n+3}{2}} - 2I_{n+4} \right)$$

für alle $n \in \mathbb{N}$.

c) Berechnen Sie I_5 .

Aufgabe 4:

Es sei

$$D = \{(x, y) \in \mathbb{R}^2 \colon x^2 + y^2 \le 1\}$$

und sei

$$f: D \to \mathbb{R}, \quad (x, y) \mapsto (x^2 + y^2 - 1)(y - x).$$

- a) Zeigen Sie, dass Deine kompakte Teilmenge von \mathbb{R}^2 ist.
- b) Bestimmen Sie die kritischen Punkte von f im Inneren $\overset{\circ}{D}$ von D.
- c) Geben Sie den Rand ∂D von D an und berechnen Sie f(x,y) für alle $(x,y)\in\partial D$.
- d) Bestimmen Sie das globale Maximum und das globale Minimum von f auf D.

Aufgabe 5:

Berechnen Sie die maximale Lösung des Anfangswertproblems

$$y'(x) = \frac{2x}{y(x) - 1}$$
 mit $y(2) = 3$

mit Angabe des maximalen Definitionsintervalls.