Thema Nr. 2 (Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Zum Erreichen der vollen Punktzahl sind alle mathematischen Gedankengänge durch einen ausführlichen Text zu begründen. Für jede Aufgabe werden maximal 6 Punkte vergeben; die höchste erreichbare Punktzahl beträgt somit 30 Punkte.

Aufgabe 1 (2+2+2 Punkte)

- a) Bestimmen Sie die Menge der komplexen Zahlen $z\in\mathbb{C}$, für welche die Reihe $\sum_{k=0}^{\infty}\frac{(-1)^k}{(z-1)^k}$ konvergiert. Leiten Sie im Fall der Konvergenz einen möglichst einfachen Term für den Grenzwert her.
- b) Bestimmen Sie die maximale Lösung des Anfangswertproblems

$$x' = -x^2$$
, $x(1) = -2$.

Geben Sie hierbei auch den Definitionsbereich dieser Lösung explizit an.

c) Bestimmen Sie alle Lösungen $y:\mathbb{R}\to\mathbb{R}$ der gewöhnlichen Differentialgleichung

$$y'(t) - 2y(t) = \cos(2t), \quad t \in \mathbb{R}.$$

Aufgabe 2 (1+2+1+2 Punkte)

Wir betrachten die Funktion

$$\gamma \colon \mathbb{R} \to \mathbb{R}^3$$
, $\gamma(t) = (\cos t, \sin t, t)$ (Schraubenlinie)

und versehen \mathbb{R}^3 mit der euklidischen Norm $||x|| = \sqrt{x_1^2 + x_2^2 + x_3^2}$. Zeigen Sie:

- a) $\gamma(\mathbb{R})$ ist eine abgeschlossene Teilmenge von \mathbb{R}^3 .
- b) Für jeden Punkt $p \in \mathbb{R}^3$ existiert ein $t_p \in \mathbb{R}$, so dass

$$\|\gamma(t_p) - p\| = \min\{\|\gamma(t) - p\| : t \in \mathbb{R}\}.$$
 (1)

c) Erfüllt t_p die Bedingung (1) aus b), so gilt

$$\gamma'(t_p) \perp (\gamma(t_p) - p).$$

d) Bestimmen Sie für p=(2,0,0) alle Lösungen t_p von (1). Begründen Sie insbesondere die Vollständigkeit Ihrer Lösung.

Aufgabe 3 (1+2+1+2 Punkte)

Auf dem Gebiet

$$\Omega := \{ z = x + iy \in \mathbb{C} : -\pi < y < 2\pi \}, \quad (x, y \in \mathbb{R})$$

betrachten wir die meromorphe Funktion

$$f(z) := \frac{1}{z \sinh(z)}$$
, wobei $\sinh(z) = \frac{e^z - e^{-z}}{2}$

ist.

- a) Bestimmen Sie alle Singularitäten von f in Ω und deren Typ.
- b) Berechnen Sie die Residuen von f in allen Polstellen.
- c) Besitzt die Funktion f eine Stammfunktion in Ω ?
- d) Bestimmen Sie $c \in \mathbb{C}$, so dass die Funktion $z \mapsto f(z) + c \frac{1}{z-i\pi}$ auf Ω eine Stammfunktion besitzt.

Begründen Sie jeweils alle Antworten auf die Teilaufgaben.

Aufgabe 4 (1+3+2 Punkte)

Gegeben sei ein Vektor $c \in \mathbb{R}^n$ und reelle $(n \times n)$ -Matrizen A, B, M. Wir betrachten die affine Differentialgleichung

$$\dot{x} = Mx + c. \tag{2}$$

Zeigen Sie:

a) Ist $y: \mathbb{R} \to \mathbb{R}$ die Lösung von (2) zum Anfangswert y(0) = 0, so ist

$$x(t) = e^{tM}x_0 + y(t), \quad t \in \mathbb{R}$$

die eindeutig bestimmte Lösung zu dem Anfangswert $x(0) = x_0$.

b) Genau dann existiert für jedes $d \in \mathbb{R}^n$ eine Lösung des Randwertproblems

$$\dot{x} = Mx + c, \qquad Ax(0) + Bx(1) = d,$$
 (3)

wenn die Matrix

$$C := A + Be^M$$

invertierbar ist. Unter der Annahme, dass dies der Fall ist, drücken Sie die Lösung des Randwertproblems (3) durch y wie in a) aus.

Hinweis: Schreiben Sie eine Lösung x in der in a) beschriebenen Form.

c) Setzen wir

$$F(X) := \sum_{k=1}^{\infty} \frac{X^{k-1}}{k!}$$

für eine reelle $(n \times n)$ -Matrix X, so ist die in a) definierte Funktion y gegeben durch

$$y(t) = tF(tM)c.$$

Hinweis: Sie dürfen verwenden, dass man bei konvergenten Potenzreihen Summation und Ableitung vertauschen darf.

Aufgabe 5 (1+1+4 Punkte)

- a) Formulieren Sie den Riemannschen Abbildungssatz.
- b) Formulieren Sie das Schwarzsche Lemma.
- c) Sei $\Omega \subseteq \mathbb{C}$ ein einfach zusammenhängendes Gebiet und $z_0 \in \Omega \neq \mathbb{C}$. Es seien $f, g \colon \Omega \to \Omega$ biholomorph mit

$$f(z_0) = g(z_0)$$
 und $f'(z_0) = g'(z_0)$.

Zeigen Sie, dass f = g gilt.