Thema Nr. 2 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

Zum Erreichen der vollen Punktzahl sind alle mathematischen Gedankengänge durch einen ausführlichen zusammenhängenden Text zu begründen!

Aufgabe 1:

Sei $B(z_0, r)$ die offene Kreisscheibe mit Mittelpunkt z_0 und Radius r > 0 in der komplexen Ebene.

a) Bestimmen Sie alle Nullstellen und alle isolierten Singularitäten der Funktion

$$f(z) = \frac{z^2(z-4)}{\sin(\pi z)}$$

sowie die Ordnung der Nullstellen und Polstellen von f, so welche vorliegen.

(b) Sei f die Funktion aus Aufgabenteil (a). Bestimmen Sie das Integral

$$\int_{\partial B(3/2,1)} f(z)dz.$$

(c) Bestimmen Sie das Integral

$$\int_{\partial B(0,4)} \frac{\cos z}{(z+1)^3} \, dz \, .$$

(6 Punkte)

Aufgabe 2:

- (a) Sei $f: \mathbb{C} \to \mathbb{C}$ eine ganze Funktion mit der Eigenschaft, dass $|f(z)| \ge \pi$ für alle $z \in \mathbb{C}$ gilt. Zeigen Sie, dass $f(z) = f(\pi)$ für alle $z \in \mathbb{C}$ gilt.
- (b) Sei $f: \mathbb{C} \to \mathbb{C}$ eine ganze Funktion mit der Eigenschaft, dass f(z+1) = f(z) = f(z+i) für alle $z \in \mathbb{C}$. Zeigen Sie, dass f konstant ist.

(6 Punkte)

Aufgabe 3:

a) Sei $D \subseteq \mathbb{C}$ offen, $c \in D$ und seien f und g auf D holomorph. Weiter habe g in c eine Nullstelle zweiter Ordnung. Zeigen Sie, dass

$$Res_c \frac{f(z)}{g(z)} = \frac{6f'(c)g''(c) - 2f(c)g'''(c)}{3(g''(c))^2}.$$

(b) Sei $D \subseteq \mathbb{C}$ offen, $c \in D$, und die auf $D \setminus \{c\}$ holomorphe Funktion h habe in c einen Pol m-ter Ordnung, $m \ge 1$. Sei p ein Polynom vom Grad $n \ge 1$. Zeigen Sie, dass $p \circ h$ in c einen Pol der Ordnung mn besitzt.

(6 Punkte)

Aufgabe 4:

a) Lösen Sie die Differentialgleichung

$$y'(x) = \frac{3x^2 + 4x + 2}{2(y(x) - 1)}, \quad y(0) = -1$$

und zeigen Sie, dass die Lösung für alle $x \ge 0$ existiert.

(b) Lösen Sie die Differentialgleichung

$$y'(x) = 2y(x)^2 + xy(x)^2$$
, $y(0) = 1$,

bestimmen Sie das maximale Existenzintervall I, alle lokalen Extrema der Lösung y auf I und klassifizieren Sie diese nach Maxima und Minima.

(6 Punkte)

Aufgabe 5:

- a) Bestimmen Sie das Volumen des Körpers im dreidimensionalen Anschauungsraum, der durch die Ebene z=0, die Fläche $z=x^2+2y^2$ und die Ebenen x+y=1, -x+y=1, x-y=1 und -x-y=1 berandet wird.
- b) Sei R das Gebiet in der euklidischen Ebene, das durch die Kurven $xy = \frac{\pi}{4}$, $xy = \frac{\pi}{2}$, y(2-x) = 2 und y(2-x) = 4 berandet wird. Bestimmen Sie das Integral

$$\int_{R} y \cos(xy) d(x,y) \,.$$

Hinweis: Transformationssatz mit x = 2v/(u+v) und y = u+v.

(6 Punkte)