Thema Nr. 2

(Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Zum Erreichen der vollen Punktzahl sind alle mathematischen Gedankengänge durch einen ausführlichen zusammenhängenden Text zu begründen!

Aufgabe 1:

Gegeben sei die Möbius-Transformation $h(z):=\frac{1}{z-1}$. Sei $\mathbb{E}\subseteq\mathbb{C}$ die offene Einheitskreisscheibe und $K\subseteq\mathbb{C}$ die abgeschlossene Kreisscheibe $\{z\in\mathbb{C}:|z-\frac{1}{2}|\leq\frac{1}{2}\}$. Mit $\partial\mathbb{E}$ und ∂K werde der Rand von \mathbb{E} bzw. K bezeichnet.

- a) Man zeige, dass $h(\partial \mathbb{E})$ und $h(\partial K)$ parallele Geraden sind.
- b) Man gebe die Geraden $h(\partial \mathbb{E})$ und $h(\partial K)$ jeweils explizit in der Form ax+by=c an, wobei x und y Real- bzw. Imaginärteil von $z\in\mathbb{C}$ sind.
- c) Man bestimme $h(\mathbb{E} \setminus K)$ explizit durch Ungleichungen der Form $ax + by \ge c$ und skizziere die Mengen $\mathbb{E} \setminus K$ und $h(\mathbb{E} \setminus K)$.

(6 Punkte)

Aufgabe 2:

Sei f eine in der offenen Einheitskreisscheibe $\mathbb{E} \subseteq \mathbb{C}$ holomorphe Funktion, für die |f(0)| < 1 und $|f(z)| \le 1$ für alle $z \in \mathbb{E}$ gilt.

Man zeige, dass dann sogar |f(z)| < 1 für alle $z \in \mathbb{E}$ gelten muss.

(6 Punkte)

Aufgabe 3:

Man bestimme die Laurent-Entwicklung von $f(z) := \frac{z}{(z-1)(z-2)}$ in der Kreisscheibe $\{z \in \mathbb{C} : |z| < 1\}$ und in den Kreisringen $\{z \in \mathbb{C} : 1 < |z| < 2\}$ und $\{z \in \mathbb{C} : 2 < |z|\}$.

(Hinweis: Man verwende Partialbruchzerlegung.)

(6 Punkte)

Aufgabe 4:

Für das Differentialgleichungssystem $\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 \end{pmatrix}$ bestimme man ein nicht-konstantes erstes

Integral, d. h. eine nicht-konstante Funktion $E: \mathbb{R}^2 \to \mathbb{R}$, die längs der Lösungskurven $\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$ konstant ist.

Aufgabe 5:

Man berechne die allgemeine Lösung der Differentialgleichung

$$x'' + 2x' + 4x = \sin t.$$

(Hinweis: Eine partikuläre Lösung ergibt sich aus dem Ansatz $x(t) = a \cos t + b \sin t$.)
(6 Punkte)