Thema Nr. 2 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

Bei den folgenden Aufgaben sind alle Schlussfolgerungen und nichttrivialen Rechnungen mit einem erklärenden Text zu begründen! Auf jede Aufgabe werden maximal 6 Punkte vergeben; die höchste erreichbare Punktzahl beträgt somit 30 Punkte.

Aufgabe 1:

Sei $G \subset \mathbb{C}$ eine beschränkte, offene und zusammenhängende Menge, die nichtleer ist. Seien $w_1, \ldots, w_n \in \mathbb{C}, n \in \mathbb{N} \setminus \{0\}$. Wir betrachten für $\alpha > 0$ die Funktion

$$f: \overline{G} \to \mathbb{R}_{\geq 0}, z \mapsto \prod_{j=1}^{n} |z - w_j|^{\alpha}.$$

- a) Zeigen Sie: $\sup_{z \in \overline{G}} f(z) = \max_{z \in \overline{G}} f(z)$
- b) Sei $z_0 \in \overline{G}$ mit $f(z_0) = \max_{z \in \overline{G}} f(z)$. Zeigen Sie, dass $z_0 \in \partial G := \overline{G} \setminus G$.

Aufgabe 2:

- a) Formulieren Sie den Satz von Liouville und beweisen Sie ihn mit Hilfe der Koeffizienten-Abschätzung von Cauchy.
- b) Sei $f: \mathbb{C} \to \mathbb{C}$ holomorph und sei $(a, b) \in \mathbb{R}^2$ mit $(a, b) \neq (0, 0)$. Zeigen Sie: Ist die Funktion $a \operatorname{Re} f + b \operatorname{Im} f: \mathbb{C} \to \mathbb{R}$ nach oben beschränkt, so ist f konstant.

Aufgabe 3:

Zeigen Sie, dass das uneigentliche Integral

$$\int_{-\infty}^{+\infty} e^{-(x+i)^2} dx := \lim_{\substack{a \to +\infty \\ b \to +\infty}} \int_{-a}^{b} e^{-(x+i)^2} dx$$

existiert und den Wert $\sqrt{\pi}$ hat.

(*Hinweis*: Integrieren Sie eine geeignete holomorphe Funktion über gewisse Rechtecke. Sie dürfen verwenden, dass $\int\limits_{-\infty}^{+\infty}e^{-x^2}dx=\sqrt{\pi}$)

Aufgabe 4:

Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar mit $f'(t) \geq f(t)$ für alle $t \geq 0$ und sei $f(0) \geq 1$.

- a) Zeigen Sie, dass f auf $\mathbb{R}_{\geq 0}$ streng monoton steigend ist.
- b) Zeigen Sie, dass $f(t) \ge \exp(t)$ für alle $t \ge 0$.

Aufgabe 5:

Gegeben sei das Differentialgleichungssystem $\dot{x} = A(\alpha)x$ auf \mathbb{R}^2 mit

$$A(\alpha) = \begin{pmatrix} \alpha + 2 & 1 \\ -2 & \alpha - 1 \end{pmatrix}, \alpha \in \mathbb{R}$$

- a) Bestimmen Sie in Abhängigkeit von $\alpha \in \mathbb{R}$ ein Fundamentalsystem des Systems.
- b) Geben Sie jeweils die Menge aller $\alpha \in \mathbb{R}$ an, so dass (0,0) ein stabiler bzw. asymptotisch stabiler Gleichgewichtspunkt des Systems $\dot{x} = A(\alpha)x$ ist.