Thema Nr. 2 (Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten.

Aufgabe 1 (6 Punkte)

Drei Fragen über Differentialgleichungen.

(a) Der Satz von Picard-Lindelöf über nichtautonome Differentialgleichungssysteme $\dot{x} = v(t,x)$ erster Ordnung, wobei $v: B \to \mathbb{R}^n$ eine stetige Abbildung auf offenem $B \subset \mathbb{R} \times \mathbb{R}^n$ bezeichnet, macht noch eine Voraussetzung über v, nämlich die Lipschitzstetigkeit in der x-Variablen. Was heißt das?

Vervollständigen Sie dazu folgenden Satz:

 $Zu \ jedem \ (t,x) \in B \ gibt \ es \ eine \ Umgebung \dots$

(b) Welche Dimension hat der Lösungsraum des linearen nichtautonomen Systems

$$\ddot{x}_1 = t\dot{x}_3
 \ddot{x}_2 = x_2 - t^2 x_3
 \ddot{x}_3 = x_1$$

Geben Sie eine kurze Begründung an!

(c) Sei A eine reelle 2×2 -Matrix. Die Lösungskurven des Systems $\dot{x} = Ax$ seien im Uhrzeigersinn nach außen drehende Spiralen. Welchen Schluss auf die Eigenwerte von A lässt das zu? Eigenwerte nur angeben!

Aufgabe 2 (6 Punkte)

Drei Fragen zur Funktionentheorie.

- (a) Hat jede holomorphe Funktion eine Stammfunktion? Begründung!
- (b) Wo konvergiert die Laurentreihe $\sum_{n=-\infty}^{\infty} z^n$? Begründung!
- (c) Nimmt die komplexe Sinusfunktion jeden Wert an? Begründung!

Aufgabe 3 (6 Punkte)

Es seien $f: \mathbb{R} \to \mathbb{R}$ und $g: (a, b) \to \mathbb{R}$ zwei C^{∞} -Funktionen, wir betrachten die Differentialgleichung 'mit getrennten Variablen' $\dot{x} = f(t)g(x)$. Sei x_0 eine Zahl zwischen zwei Nullstellen von g, d.h. $x_1 < x_0 < x_2$ und $g(x_1) = g(x_2) = 0$. Folgt aus diesen Angaben bereits, dass die maximale Lösung von $\dot{x} = f(t)g(x)$ zum Anfangswert $x(0) = x_0$ auf ganz \mathbb{R} definiert ist? Beweisen Sie Ihre Antwort!

Aufgabe 4 (6 Punkte)

Bestimmen Sie alle auf ganz \mathbb{C} definierten holomorphen Funktionen f(z), welche $|f(z)| \leq |\sin z|$ für alle $z \in \mathbb{C}$ erfüllen. Beweisen Sie Ihr Ergebnis!

Aufgabe 5 (6 Punkte)

Konstruktion eines Arcustangens-Zweiges.

Beweisen Sie, dass es ein Gebiet $G \subset \mathbb{C}$ und eine holomorphe Funktion $f: G \to \mathbb{C}$ mit folgenden Eigenschaften gibt:

- (1) $\tan f(z) = z$ für alle $z \in G$,
- (2) G ist maximal.

Mit maximal ist hier gemeint: Wenn $G_1 \subset \mathbb{C}$ ein Gebiet mit $G \subset G_1$ und $f_1 : G_1 \to \mathbb{C}$ holomorph mit $f(z) = f_1(z)$ für alle $z \in G$ ist, dann folgt bereits $G = G_1$.