Thema Nr. 1 (Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

1. Aufgabe (5 Punkte)

Gegeben sei die Differentialgleichung (DGL)

$$y'=xe^{-y}.$$

- a) Man skizziere das Richtungsfeld der DGL im \mathbb{R}^2 .
- b) Es sei $c \in \mathbb{R}$. Man löse die DGL mit der Anfangsbedingung y(0) = c. Wie weit lässt sich die Lösung maximal fortsetzen?

2. Aufgabe (6 Punkte)

Es sei $a: \mathbb{R} \to \mathbb{R}$ eine Funktion mit folgenden Eigenschaften:

- i) a ist stetig auf \mathbb{R}^* : = $\mathbb{R} \setminus \{0\}$.
- ii) Im Nullpunkt existieren die rechtsseitigen und linksseitigen Limites

$$a_{+}(0) := \lim_{x \searrow 0} a(x), \ a_{-}(0) := \lim_{x \nearrow 0} a(x).$$

Eine Funktion φ : $\mathbb{R} \to \mathbb{R}$ heiße Lösung der DGL

$$y'' + a(x)y = 0,$$

falls φ auf \mathbb{R} einmal stetig differenzierbar und auf \mathbb{R}^* zweimal stetig differenzierbar ist und in \mathbb{R}^* der Gleichung $\varphi''(x) + a(x)\varphi(x) = 0$ genügt.

a) Man zeige, dass zu jeder Anfangsbedingung

$$y(1) = c_0, y'(1) = c_1 \quad (c_0, c_1 \in \mathbb{R})$$

genau eine (auf ganz R definierte) Lösung der DGL existiert.

b) Es sei speziell a(x) = -1 für x < 0 und a(x) = +1 für $x \ge 1$. Man zeige, dass es genau eine auf ganz \mathbb{R} beschränkte Lösung $\varphi: \mathbb{R} \to \mathbb{R}$ der DGL mit $\varphi(0) = 1$ gibt. Für diese Lösung berechne man $\varphi(\pi/4)$.

Seite: 3

3. Aufgabe (5 Punkte)

Die lineare Differentialgleichung 2. Ordnung

$$y'' - xy' + y = 0$$

besitzt offensichtlich die Lösung $\varphi(x) = x$. Für eine zweite, von φ linear unabhängige Lösung ψ mit der Anfangsbedingung $\psi(0) = 1$, $\psi'(0) = 0$ mache man den Potenzreihenansatz

$$\psi(x) = \sum_{k=0}^{\infty} a_k x^k.$$

Man bestimme eine Rekursionsformel für die Koeffizienten und zeige, dass die sich ergebende Potenzreihe den Konvergenzradius ∞ hat.

4. Aufgabe (8 Punkte)

Es sei $\mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ die obere Halbebene und $\mathbb{E} = \{z \in \mathbb{C} : |z| < 1\}$ der Einheitskreis.

a) Man zeige: Die Funktion $z \mapsto \phi(z) := e^{2\pi i z}$ bildet \mathbb{H} lokal biholomorph auf $\mathbb{E} \setminus \{0\}$ ab. Zwei Punkte z_1, z_2 werden genau dann auf denselben Punkt abgebildet, wenn $z_1 - z_2 \in \mathbb{Z}$ gilt.

Weiter sei $f: \mathbb{H} \to \mathbb{C}$ eine holomorphe Funktion mit der Periode 1, d.h. f(z+1) = f(z) für alle $z \in \mathbb{H}$. Man zeige:

b) f lässt sich in eine Reihe

$$f(z) = \sum_{k=-\infty}^{+\infty} c_k e^{2\pi i k z}$$

entwickeln, die auf jeder kompakten Teilmenge von H gleichmäßig konvergiert.

- c) Die Teilreihe $\sum_{k=-\infty}^{0} c_k e^{2\pi i k z}$ konvergiert auf ganz \mathbb{C} .
- d) Genau dann gilt $c_k = 0$ für alle k < 0, wenn f auf der Menge $\{z \in \mathbb{H} : \text{Im}(z) \ge 1\}$ beschränkt ist.

Seite: 4

5. Aufgabe (6 Punkte)

a) Man konstruiere eine biholomorphe Abbildung der längs der negativen reellen Achse geschlitzten Ebene

$$G: = \mathbb{C} \setminus \{z \in \mathbb{C} : \operatorname{Im}(z) = 0, \operatorname{Re}(z) \le 0\}$$

auf den Einheitskreis.

b) Es sei $\phi: G \to \mathbb{E}$ eine beliebige biholomorphe Abbildung von G auf den Einheitskreis. Man zeige: Es gibt einen (von ϕ abhängigen) Punkt $P \in \partial \mathbb{E}$ auf dem Rand des Einheitskreises, so dass für jede reelle Zahl α mit $-\pi < \alpha < \pi$ gilt:

$$\lim_{r \to \infty} \phi(re^{i\alpha}) = P.$$