Thema Nr. 1 (Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Zum Erreichen der vollen Punktzahl sind alle mathematischen Gedankengänge durch einen ausführlichen Text zu begründen. Für jede Aufgabe werden maximal 6 Punkte vergeben; die höchste erreichbare Punktzahl beträgt somit 30 Punkte.

Aufgabe 1 (3+1+2 Punkte)

(a) Es sei

$$P(z) := 2019z^{2019} + \sum_{k=0}^{2018} a_k z^k,$$

wobei $a_k \in \mathbb{C}$, $|a_k| < 1$ für alle $k = 0, \ldots, 2018$ gelte.

Bestimmen Sie die Anzahl der Nullstellen von P in der offenen Einheitskreisscheibe $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ (mit Berücksichtigung von Vielfachheiten gezählt).

- (b) Formulieren Sie für den Spezialfall holomorpher Funktionen das Argumentprinzip (auch als Satz vom nullstellenzählenden Integral bekannt).
- (c) Es sei P wie in (a) definiert. Zeigen Sie

$$\exp\left(\frac{1}{673}\int_{\partial\mathbb{D}}\frac{P'(z)}{P(z)}\;dz\right)=1.$$

Hierbei bezeichnet $\partial \mathbb{D}$ die einmal im mathematisch positiven Sinne durchlaufene Einheitskreislinie.

Aufgabe 2 (1+2+3 Punkte)

(a) Es sei $(f_n)_n$ eine Folge von Funktionen $f_n : \mathbb{R} \to \mathbb{R}$. Formulieren Sie das Majorantenkriterium von Weierstraß für die gleichmäßige Konvergenz der Funktionenreihe $\sum_{n=1}^{\infty} f_n$ auf \mathbb{R} .

Von nun an sei $f:[0,1] \longrightarrow \mathbb{R}$ eine stetig differenzierbare Funktion auf dem kompakten Intervall $[0,1] \subseteq \mathbb{R}$.

(b) Zeigen Sie, dass f dehnungsbeschränkt (global Lipschitz-stetig) ist, d.h. dass es ein L > 0 gibt, so dass $|f(x) - f(y)| \le L \cdot |x - y|$ für alle $x, y \in [0, 1]$ gilt.

(c) Zeigen Sie, dass die Funktionenreihe

$$\sum_{n=1}^{\infty} \left[f\left(\frac{1}{n^2 + x^2}\right) - f(0) \right]$$

gleichmäßig auf \mathbb{R} konvergiert (bezüglich x). Begründen Sie, ob die Grenzfunktion stetig ist.

Aufgabe 3 (3+3 Punkte)

Beweisen Sie folgende Aussagen:

(a) Es sei $x_0 \in]-\pi,\pi[$ und $\varphi:I_{\max}\longrightarrow \mathbb{R}$ die maximale Lösung des Anfangswertproblems

$$x' = 1 + \cos(x),$$
 $x(0) = x_0.$

Dann ist φ auf ganz \mathbb{R} definiert (also $I_{\max} = \mathbb{R}$) und $\varphi(t) \in]-\pi,\pi[$ für alle $t \in \mathbb{R}$.

(b) Es sei $f: \mathbb{R} \to \mathbb{R}$ lokal Lipschitz-stetig. Dann ist jede nicht-konstante Lösung der autonomen Differentialgleichung x' = f(x) streng monoton.

Aufgabe 4 (3+1+2 Punkte)

(a) Zeigen Sie: Das System von Differentialgleichungen

$$x' = y$$

$$y' = e^{2x}$$

besitzt ein Erstes Integral S, d.h. es gibt eine nicht-konstante Funktion $S: \mathbb{R}^2 \longrightarrow \mathbb{R}$, so dass $t \mapsto S(x(t), y(t))$ für jede Lösung $t \mapsto (x(t), y(t))$ des Differentialgleichungssystems konstant ist.

Leiten Sie hieraus ab, dass jede Lösung des zugehörigen Anfangswertproblems (x(0), y(0)) = (0, 1) die Relation $y(t) = e^{x(t)}$ für alle t aus dem Definitionsbereich der Lösung erfüllt.

(b) Zeigen Sie (z. B. mithilfe von (a)), dass jede Lösung des Anfangswertproblems

$$x'' = e^{2x}, x(0) = 0, x'(0) = 1$$
 (1)

auch das Anfangswertproblem

$$x' = e^x, \qquad x(0) = 0$$

löst.

(c) Bestimmen Sie (z. B. mithilfe von (b)) die maximale Lösung des Anfangswertproblems (1). Hinweis: Geben Sie auch das maximale Definitionsintervall an.

Anmerkung: Die Existenz der maximalen Lösungen der in dieser Aufgabe betrachteten Anfangswertprobleme muss nicht begründet werden.

Aufgabe 5 (2+2+2 Punkte)

- (a) Es sei $f: \mathbb{C} \setminus \{0\} \longrightarrow \mathbb{C}$ eine holomorphe Funktion mit $f\left(\frac{1}{n}\right) = n$ für alle $n \in \mathbb{N}$. Welchen Konvergenzradius hat die Potenzreihenentwicklung von f um $z_0 = 1 + i$? Begründen Sie kurz Ihre Antwort.
- (b) Es sei $G \neq \mathbb{C}$ ein einfach zusammenhängendes Gebiet in \mathbb{C} , und es seien $a, b \in G$ mit $a \neq b$. Zeigen Sie, dass es eine biholomorphe (konforme und surjektive) Abbildung $f: G \longrightarrow G$ von G auf sich selbst mit f(a) = b gibt.
- (c) Wie in Aufgabe 1 sei $\mathbb D$ die offene Einheitskreisscheibe in $\mathbb C$. Zeigen Sie, dass es keine holomorphe Funktion $f:\mathbb C\longrightarrow \mathbb C$ mit

$$f(\partial \mathbb{D}) = \partial \mathbb{D} \qquad \text{ und } \qquad f(z) \neq 0 \text{ für alle } z \in \mathbb{C}$$

gibt.