Thema Nr. 2 (Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Zum Erreichen der vollen Punktzahl sind alle mathematischen Gedankengänge durch einen ausführlichen zusammenhängenden Text zu begründen!

Für jede der 5 Aufgaben werden maximal 6 Punkte vergeben; die höchste erreichbare Punktzahl beträgt somit 30 Punkte.

Aufgabe 1 (2+2+2 Punkte)

- (a) Definiere $U:=\left\{z\in\mathbb{C}:2|\mathrm{Re}(z)|+3|\mathrm{Im}(z)|+\frac{1}{1+|z|^2}<\frac{11}{2}\right\}$. Gibt es eine holomorphe Funktion $h:\mathbb{C}\to U$ und Punkte $v,w\in\mathbb{C}$ mit $h(v)=\frac{i}{2}$ und h(w)=1-i? Begründung!
- (b) Sei $\Omega \subseteq \mathbb{C}$ eine nicht-leere offene Menge und $z_0 \in \Omega$. Seien $f: \Omega \to \mathbb{C}$ und $g: \Omega \to \mathbb{C}$ holomorphe Funktionen mit $f(z_0) = f^{(1)}(z_0) = 0$, $g(z_0) = g^{(1)}(z_0) = 0$ und $g^{(2)}(z_0) \neq 0$. Zeigen Sie:

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f^{(2)}(z_0)}{g^{(2)}(z_0)}.$$

(c) Definiere $F: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ durch

$$F(z) := \frac{1 - \cos(z)}{z^2}, \qquad z \neq 0.$$

Ist die isolierte Singularität 0 von F hebbar? Begründung!

Aufgabe 2 (3+3 Punkte)

Sei
$$U := \{ z \in \mathbb{C} : \operatorname{Re}(z) > 0 \}.$$

(a) Zeigen Sie, dass

$$Log(z+i) - Log(z-i) = Log(\frac{z+i}{z-i}), \quad z \in U,$$

gilt, wobei Log : $\Omega_- \to \mathbb{C}$, mit $\Omega_- := \mathbb{C} \setminus \{x + i0 : x \in]-\infty, 0]\}$, der Hauptzweig des Logarithmus ist.

(b) Für jedes $z \in U$ sei $\left[1, \frac{z}{2}\right]$ die gerade Strecke in $\mathbb C$ von 1+0i nach $\frac{z}{2}$. Definiere $f: U \to \mathbb C$ durch die Wegintegrale

$$f(z) := \int_{[1,\frac{z}{\delta}]} \frac{1}{1+\xi^2} d\xi, \qquad z \in U.$$

Zeigen Sie:

$$f(z) = \frac{\pi}{4} + \frac{i}{2} \operatorname{Log}\left(\frac{z+2i}{z-2i}\right), \qquad z \in U.$$

Aufgabe 3 (2+4 Punkte)

(a) Sei $K:=\{z\in\mathbb{C}:|z|\leq 1\}$ und r eine reelle Zahl mit r>e. Zeigen Sie, dass die Gleichung

$$rze^z = 1$$

genau eine Lösung in K besitzt.

(Hinweis: Die Verwendung des Satzes von Rouché könnte hier hilfreich sein.)

(b) Sei γ die positiv orientierte Kreislinie mit Mittelpunkt 0 und Radius 3. Definiere die Funktion $f: \mathbb{R} \to \mathbb{C}$ durch die Wegintegrale

$$f(t) := \frac{1}{2\pi i} \int_{\gamma} \frac{e^{zt}}{z^2(z^2 + 2z + 2)} dz, \qquad t \in \mathbb{R}.$$

Zeigen Sie, dass f eine reell-wertige C^{∞} -Funktion auf \mathbb{R} mit f(0) = 0 ist.

Aufgabe 4 (3+3 Punkte)

Man löse das Anfangswertproblem x' = x + t, x(0) = -1

- (a) mit der Methode der Variation der Konstanten;
- (b) mittels der Picard-Lindelöf-Iteration $(\alpha_n)_{n\in\mathbb{N}_0}$, beginnend mit $\alpha_0(t)\equiv -1$.

Aufgabe 5 (6 Punkte)

Gegeben sei das ebene autonome System

$$x' = -e^x - 2y + 1,$$

$$y' = 2x - y.$$

Man bestimme alle Ruhepunkte des Systems und untersuche diese auf Stabilität.