Thema Nr. 1 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

Auf jede Aufgabe werden maximal 6 Punkte vergeben; die höchste erreichbare Punktzahl beträgt somit 30 Punkte.

Aufgabe 1:

Gegeben sei die Funktion $f(z) := \frac{z+1}{2z}, z \in \mathbb{C} \setminus \{0\}.$

- a) Man bestimme das Bild der Einheitskreislinie unter f.
- b) Man bestimme das Bild der punktierten offenen Kreisscheibe $\{z \in \mathbb{C} \mid 0 < |z| < 1\}$ unter f.

Aufgabe 2:

Sei $G \subseteq \mathbb{C}$ ein Gebiet und sei z_0 eine Singularität der holomorphen Funktionen $f, g : G \setminus \{z_0\} \longrightarrow \mathbb{C}$. Es existiere ein c > 0 mit $|f(z)| \le c|g(z)|, z \in G \setminus \{z_0\}$. Man zeige:

- a) Ist z_0 eine hebbare Singularität von g, so ist z_0 auch eine hebbare Singularität von f.
- b) Ist z_0 eine Polstelle von f, so ist z_0 auch eine Polstelle von g.

Aufgabe 3:

Gegeben sei das Gebiet $G:=\mathbb{C}\setminus\{iy\mid y\geq 0\}$. Auf welches der folgenden Gebiete läßt sich G biholomorph abbilden?

- a) $\{w \in \mathbb{C} \mid |w| < 1\};$
- b) $\{w \in \mathbb{C} \mid |w| > 1\}.$

Man gebe im Falle der Existenz jeweils eine solche Abbildung an.

Aufgabe 4:

Sei $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ ein stetig differenzierbares Vektorfeld. Der topologische Abschluss M der Menge $\{x \in \mathbb{R}^n \mid f(x) \neq 0\}$ sei kompakt. Man zeige:

- a) Eine Lösung des Anfangswertproblems $x'=f(x), x(0)=x_0$ verläuft für jeden Punkt $x_0\in M$ vollständig in M.
- b) Das Anfangswertproblem x' = f(x), $x(0) = x_0$ ist für jeden Punkt $x_0 \in \mathbb{R}^n$ global lösbar.

Aufgabe 5:

Man untersuche die Nulllösung des Differentialgleichungssystems

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -3 & a \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

für jedes $a \in \mathbb{R}$ auf Stabilität.