Thema Nr. 1

(Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Alle Rechnungen und Schlussfolgerungen sind mit einem erklärenden Text zu begründen.

Aufgabe 1 (6 Punkte)

Man bestimme die möglichen Werte des Integrals

$$\int_{\Gamma} \frac{1}{1+z^2} \, dz$$

in den beiden folgenden Situationen:

- (i) Γ ist eine Kreislinie in $\mathbb{C}\setminus\{\pm i\}$, die einmal im Uhrzeigersinn durchlaufen wird;
- (ii) Γ ist eine beliebige stückweise stetig differenzierbare geschlossene Kurve in $\mathbb{C}\setminus\{\pm\,i\}$.

Aufgabe 2 (6 Punkte)

- a) Man zeige, dass es eine meromorphe Funktion f mit folgenden Eigenschaften gibt:
 - (i) f verschwindet in allen Punkten $i\nu^2$, $\nu \in \mathbb{N}$;
 - (ii) f hat in allen Punkten $\mu \in \mathbb{N}$ Polstellen erster Ordnung.
- b) Kann man überdies sogar erreichen, dass das Residuum der in (a) konstruierten Funktion f in allen Polstellen $\mu \in \mathbb{N}$ gleich 1 ist? (Begründung!)

Aufgabe 3 (6 Punkte)

Sei α ein Winkel mit $0 < \alpha < \frac{\pi}{2}$ und sei

$$W_{\alpha} := \{ z \in \mathbb{C} \setminus \{0\} \mid z = |z|e^{it} \text{ mit } |t| < \alpha \}.$$

D bezeichne die offene Einheitskreisscheibe in $\mathbb C$. Für eine offene Teilmenge $\Omega\subseteq\mathbb C$ werde mit $\mathrm{Aut}(\Omega)$ die Gruppe der biholomorphen Selbstabbildungen von Ω bezeichnet.

a) Man finde biholomorphe Abbildungen $\phi_1:W_{\alpha}\longrightarrow\{z\in\mathbb{C}\mid \operatorname{Re} z>0\}$ und $\phi_2:\{z\in\mathbb{C}\mid \operatorname{Re} z>0\}\longrightarrow D.$

- b) Die biholomorphe Abbildung $\phi := \phi_2 \circ \phi_1$ von W_α nach D induziert einen Isomorphismus H von Aut (D) nach Aut (W_α) , beschrieben durch $H(f) = \phi^{-1} \circ f \circ \phi$.
 - (i) Man zeige, dass $I(z) := z^{-1}$ ein Element von Aut (W_{α}) ist.
 - (ii) Man bestimme $H^{-1}(I)$.

Aufgabe 4 (6 Punkte)

Auf $\mathbb{R}^2 \setminus \{(0,0)\}$ sei folgendes Vektorfeld gegeben:

$$f\begin{pmatrix} x \\ y \end{pmatrix} := \begin{pmatrix} -y \\ x \end{pmatrix} + (1 - \sqrt{x^2 + y^2}) \begin{pmatrix} x \\ y \end{pmatrix}.$$

Für alle Lösungen $\alpha:]a, \infty[\longrightarrow \mathbb{R}^2 \setminus \{(0,0)\}$ der Differentialgleichung

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = f \begin{pmatrix} x \\ y \end{pmatrix}$$
 zeige man: $\lim_{t \to +\infty} |\alpha(t)| = 1$.

(Hinweis: Man leite zunächst eine Differentialgleichung her, der die Funktion $r(t):=|\alpha(t)|$ genügt.)

Aufgabe 5 (6 Punkte)

Gegeben sei die reelle Matrix

$$A = \begin{pmatrix} 0 & -\beta & 0 & 0 \\ \beta & 0 & 0 & 0 \\ 0 & 0 & 0 & -\gamma \\ 0 & 0 & \gamma & 0 \end{pmatrix}$$

mit $\beta, \gamma \neq 0$. Man zeige:

Genau dann sind sämtliche Lösungen des homogenen linearen Differentialgleichungssystems

$$x' = Ax$$

periodisch, wenn β/γ rational ist.