Thema Nr. 3

(Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Bei den folgenden Aufgaben sind alle Schlussfolgerungen und nichttrivialen Rechnungen mit einem erklärenden Text zu begründen. Auf jede Aufgabe werden maximal 6 Punkte vergeben; die höchste erreichbare Punktezahl beträgt 30 Punkte.

Aufgabe 1:

Drücken Sie das Integral

$$I = \frac{1}{2\pi i} \int_{|z|=1} e^{z^4} e^{1/z} dz$$

durch eine unendliche Reihe aus und berechnen Sie den Wert auf drei Nachkommaziffern genau. Beweisen Sie durch eine Abschätzung des Reihenrests, dass die berechneten Ziffern richtig sind!

Aufgabe 2:

Es sei $D=\{z\in\mathbb{C}\ |\ |z|>1\}$ das Äußere der Einheitskreisscheibe. Gibt es eine holomorphe Funktion $f:D\to\mathbb{C}$ mit $(f(z))^3=z^3-1$? Gibt es eine holomorphe Funktion $g:D\to\mathbb{C}$ mit $(g(z))^4=z^3-1$?

Aufgabe 3:

Es bezeichne $\mathcal J$ die Menge aller ganzen Funktionen f, die f(k)=0 für alle $k\in\mathbb Z$ mit höchstens endlich vielen Ausnahmen erfüllen. Ein Beispiel einer Funktion in $\mathcal J$ ist

$$f(z) = \frac{z \cdot \sin(\pi z)}{z^2 - 1}.$$

- a) Zeigen Sie, dass für beliebige $f_1, f_2 \in \mathcal{J}$ und beliebige ganze Funktionen g auch $f_1 + f_2 \in \mathcal{J}$ und $gf_1 \in \mathcal{J}$ gilt. (Die Menge \mathcal{J} ist ein Ideal im Ring der ganzen Funktionen.)
- b) Zeigen Sie: Zu beliebigen $f_1, ..., f_n \in \mathcal{J}$ gibt es eine Funktion $f \in \mathcal{J}$, die sich nicht in der Gestalt $f = \sum_{\nu=1}^n g_{\nu} f_{\nu}$ mit ganzen Funktionen $g_1, ..., g_n$ darstellen lässt. (Das Ideal \mathcal{J} ist nicht endlich erzeugt.)

Aufgabe 4:

Mit reellen Zahlen a,b,c sei

$$A = \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & c & b \end{pmatrix} \qquad B = \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & -c & b \end{pmatrix}.$$

Geben Sie für jedes der beiden Differentialgleichungssysteme y' = Ay und y' = By eine Basis des Raumes der Lösungen an! Geben Sie für jedes der beiden Systeme notwendige und hinreichende Bedingungen für die Konstanten a,b,c an, so dass Folgendes gilt:

i) Für alle Lösungen φ ist $\lim_{t \to \infty} \varphi(t) = 0$.

Geben Sie für jedes der beiden Systeme notwendige und hinreichende Bedingungen für a,b,c an, so dass gilt:

ii) Es existiert eine nicht-konstante periodische Lösung.

Aufgabe 5:

Auf $D = \{(x,y) \in \mathbb{R}^2 | x > 0, y > 0 \}$ sei das autonome System

$$\dot{x} = x - axy,$$

$$\dot{y} = -y + bxy$$

mit Konstanten a > 0, b > 0 gegeben.

a) Zeigen Sie, dass die Funktion

$$H(x,y) = (bx - \log x) + (ay - \log y)$$

längs einer jeden Lösung des Systems konstant ist.

b) Zeigen Sie: Für jeden Punkt $\left(x_0,y_0\right)\in D$ ist die maximale Lösung φ des Systems mit dem Anfangspunkt $\varphi(0)=\left(x_0,y_0\right)$ auf ganz $\mathbb R$ definiert, und sie ist periodisch.