Thema Nr. 1

(Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Bei den folgenden Aufgaben sind alle Schlussfolgerungen und nichttrivialen Rechnungen mit einem erklärenden Text zu begründen. Auf jede Aufgabe werden maximal 6 Punkte vergeben.

Aufgabe 1;

a) Bestimmen Sie die Art der Singularität der folgenden beiden Funktionen $f,g:\mathbb{C}\setminus\{0\}\to\mathbb{C}$ im Nullpunkt:

$$f(z) \coloneqq \frac{1}{z^2} \sin(z^2), \qquad g(z) \coloneqq z \cos \frac{1}{z}.$$

b) Berechnen Sie das Integral

$$\int_{\gamma} g(z)dz$$

über den positiv orientierten Rand γ des Rechtecks mit den Eckpunkten 1-i, 1+3i, -4+3i und -4-i.

Aufgabe 2:

Sei $f: \mathbb{C} \setminus \{-i\} \to \mathbb{C}$ definiert durch

$$f(z) := \sin\left(\frac{1}{1 - iz}\right).$$

- a) Zeigen Sie, dass f holomorph ist und Nullstellen in den Punkten $-i + i \frac{1}{k\pi}$ mit $k \in \mathbb{N}$ besitzt, aber nicht identisch Null ist.
- b) Warum widerspricht das Ergebnis in a) nicht dem Identitätssatz?
- c) Bestimmen Sie den Konvergenzradius der Potenzreihenentwicklung von f um 0.

Aufgabe 3:

Beweisen Sie, dass für jedes $\alpha \in \mathbb{R}$ das Polynom

$$p_{\alpha}(z) = z^6 + i\alpha z + 1$$

in der oberen Halbebene $\{z \in \mathbb{C} : \operatorname{Im} z > 0\}$ genau drei Nullstellen (mit Vielfachheit gezählt) hat.

Aufgabe 4:

Welche der drei Differentialgleichungen

(a)
$$y' = |y|$$
, (b) $y' = \sqrt{|y|}$, (c) $y' = y^2$

besitzen eine Lösung bzw. eine eindeutig bestimmte Lösung φ mit $\varphi(0) = 0$?

Aufgabe 5:

Untersuchen Sie, ob der Gleichgewichtspunkt (0,0) des autonomen Systems

$$\begin{cases} \dot{x} = -\sin x \cdot \cos y + y(1 - 2e^y) \\ \dot{y} = x \cdot \cos x - e^x \cdot \sin y \end{cases}$$

asymptotisch stabil ist.