Thema Nr. 3 (Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Im Folgenden bezeichne $\mathbb{E} := \{z \in \mathbb{C} : |z| < 1\}$ die komplexe Einheitskreisscheibe.

1. Aufgabe (4 Punkte)

Es sei $f: \mathbb{E} \to \mathbb{C}$ eine holomorphe Funktion mit der Eigenschaft $f(z) = f(z^2)$ für alle $z \in \mathbb{E}$. Zeigen Sie, dass f konstant ist.

2. Aufgabe (7 Punkte)

- a) Formulieren Sie das Maximum- und Minimumprinzip für holomorphe Funktionen.
- b) Es sei $f: \overline{\mathbb{E}} \to \mathbb{C}$ eine stetige und auf \mathbb{E} holomorphe Funktion, die in $\overline{\mathbb{E}}$ keine Nullstelle besitzt und deren Betrag auf $\partial \mathbb{E}$ konstant ist. Beweisen Sie, dass f konstant ist.
- c) Es sei $f: \overline{\mathbb{E}} \to \mathbb{C}$ eine stetige und auf \mathbb{E} holomorphe Funktion, deren Realteil auf $\partial \mathbb{E}$ konstant ist. Beweisen Sie, dass f konstant ist.

3. Aufgabe (6 Punkte)

- a) Wie lautet der Satz von Rouché?
- b) Es seien $G \subset \mathbb{C}$ ein Gebiet, $(f_n)_{n=0}^{\infty}$ eine Folge auf G holomorpher Funktionen, die gleichmäßig auf Kompakta gegen f konvergiert, und $z_0 \in G$ eine isolierte Nullstelle von f. Beweisen Sie, dass es einen Index N_0 und eine Folge $(z_n)_{n=N_0}^{\infty}$ in G gibt, so dass
 - i) $z_n \to z_0$ für $n \to \infty$,
 - ii) $f_n(z_n) = 0$ für alle $n \ge N_0$.

4. Aufgabe (3 Punkte)

Es seien $f:\mathbb{R} \to \mathbb{R}$ eine stetige Funktion und φ die maximale Lösung der Differentialgleichung

$$\dot{x} = f(t)x$$

zum Anfangswert x(0)=1. Zeigen Sie, dass φ genau dann auf ganz $\mathbb R$ existiert, wenn

$$\int_{0}^{t} f(s)ds < 1 \text{ für alle } t \in \mathbb{R}.$$

5. Aufgabe (10 Punkte)

Gegeben sei die Differentialgleichung $\ddot{x} = -x + x^3$.

- a) Bestimmen Sie ein erstes Integral dieser Differentialgleichung, indem Sie zunächst mit \dot{x} multiplizieren und anschließend über Intervalle [0,t] integrieren.
- b) Bestimmen Sie die kritischen Punkte ($\dot{x}=0$) und zeichnen Sie ein Phasenporträt mit Richtungspfeilen.
- c) Für welche Anfangsbedingungen $x(0) = x_0$, $\dot{x}(0) = y_0$ bleibt die maximale Lösung beschränkt?