Thema Nr. 1 (Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Zum Erreichen der vollen Punktzahl sind alle mathematischen Gedankengänge sprachlich angemessen, nachvollziehbar und logisch exakt zu begründen. Für jede der 5 Aufgaben werden maximal 6 Punkte vergeben. Die höchste erreichbare Punktzahl beträgt somit 30 Punkte.

Aufgabe 1:

a) Es sei $f:[0,1] \to \mathbb{R}$ stetig und

$$\int_{0}^{1} |f(x)|^{n} dx \le 1 \quad \text{ für alle } n \in \mathbb{N}.$$

Zeigen Sie, dass $|f(x)| \le 1$ für alle $x \in [0, 1]$.

Hinweis: Widerspruchsbeweis!

- b) Beweisen oder widerlegen Sie die folgenden Aussagen:
 - i) Genügen $f, g : \mathbb{R} \to \mathbb{R}$ jeweils einer globalen Lipschitz-Bedingung, so erfüllt auch die Funktion $f \circ g : \mathbb{R} \to \mathbb{R}$ eine globale Lipschitz-Bedingung.
 - ii) Es seien $f,g:\mathbb{R}\to\mathbb{R}$ stetig und $f\cdot g$ sei Lipschitz-stetig. Dann sind auch f und g Lipschitz-stetig.

$$(3 + (2 + 1))$$
 Punkte)

Aufgabe 2:

Es sei f eine holomorphe Funktion auf der Kreisscheibe $K_2(0):=\{z\in\mathbb{C}:|z|<2\}$ und f sei reellwertig auf der Menge $\{z\in\mathbb{C}:|z|=1,\,\mathrm{Im}(z)>0\}.$

- a) Es sei $U := \{z \in \mathbb{C} : |z| > 1/2\}$. Zeigen Sie, dass die Funktion $z \mapsto \overline{f(1/\overline{z})}$ holomorph auf U ist.
- b) Zeigen Sie mithilfe von a), dass es eine ganze Funktion $g: \mathbb{C} \to \mathbb{C}$ gibt, die in $K_2(0)$ mit f übereinstimmt.
- c) Zeigen Sie mithilfe von b), dass f konstant ist.

$$(2+2+2 \text{ Punkte})$$

Aufgabe 3:

Im Folgenden sei $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$ die offene Einheitskreisscheibe der komplexen Ebene.

- a) Es sei $f: \mathbb{D} \to \mathbb{D}$ holomorph. Beweisen Sie, dass $|f'(0)| \leq 1$.
- b) Es sei $G \subseteq \mathbb{C}$ ein einfach zusammenhängendes Gebiet mit $0 \in G$. Untersuchen Sie die Menge

$$M := \{g'(0) : g : G \rightarrow G \text{ holomorph mit } g(0) = 0\}$$

auf Beschränktheit und auf Offenheit.

Hinweis: Fallunterscheidung: $G = \mathbb{C}$ und $G \neq \mathbb{C}$. Für $G \neq \mathbb{C}$ beachte man a).

(2 + 4 Punkte)

Aufgabe 4:

a)

- i) Es sei $f: \mathbb{R} \to \mathbb{R}$, $f(y) = 2y^3$ und $y_0 \in \mathbb{R}$. Bestimmen Sie die eindeutig bestimmte maximale Lösung des Anfangswertproblems y' = f(y), $y(0) = y_0$.
- ii) Bestimmen Sie alle $x_1 \in \mathbb{R}$ derart, dass es genau eine differenzierbare Funktion $x:[0,1] \to \mathbb{R}$ gibt, die den Bedingungen

$$x''(t) = 2x'(t)^3$$
 für alle $t \in [0, 1]$ und $x(0) = 0$ sowie $x(1) = x_1$

genügt.

Hinweis: Teil i)

b) Gegeben sei die Differentialgleichung

$$x' = f(t, x) \tag{1}$$

mit einer stetigen Funktion $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, die bzgl. x Lipschitz-stetig sei. Für je zwei Lösungen $\phi_1: I_1 \to \mathbb{R}^n$, $\phi_2: I_2 \to \mathbb{R}^n$ von (1) mit $I:=I_1 \cap I_2 \neq \emptyset$ sei für alle $c_1, c_2 \in \mathbb{R}$ die Funktion $c_1\phi_1 + c_2\phi_2: I \to \mathbb{R}^n$ ebenfalls eine Lösung von (1). Zeigen Sie, dass es eine stetige Funktion $A: \mathbb{R} \to \mathbb{R}^{n \times n}$ gibt derart, dass f(t, x) = A(t)x für alle $t \in \mathbb{R}$ und alle $x \in \mathbb{R}^n$ gilt.

$$((1.5 + 2.5) + 2 \text{ Punkte})$$

Aufgabe 5:

- a) Es sei $g:[0,\infty)\to\mathbb{R}$ differenzierbar und L>0 mit $g'(t)\leq -Lg(t)$ für alle $t\in[0,+\infty)$. Zeigen Sie, dass $g(t)\leq g(0)e^{-Lt}$ für alle $t\in[0,\infty)$. Hinweis: Betrachten Sie die Funktion $t\mapsto e^{Lt}g(t)$.
- b) Im Folgenden bezeichnet $||\cdot||$ die euklidische Norm und $\langle\cdot,\cdot\rangle$ das euklidische Skalarprodukt des \mathbb{R}^n .

Es seien $D \subseteq \mathbb{R}^n$ offen mit $0 \in D$, $f: D \to \mathbb{R}^n$ stetig differenzierbar mit f(0) = 0. Weiter seien a, b und c positive Konstanten sowie $V: D \to \mathbb{R}$ eine Funktion derart, dass

$$|a||x||^2 \le V(x) \le b||x||^2$$
 und $\langle \operatorname{grad} V(x), f(x) \rangle \le -c||x||^2$

für alle $x \in D$. Zeigen Sie, dass es positive Konstanten α , η und K gibt, derart, dass jede maximale Lösung ϕ des Systems x' = f(x) mit $||\phi(0)|| < \eta$ mindestens auf $[0, +\infty)$ existiert und dass

$$||\phi(t)|| \le Ke^{-\alpha t}$$
 für alle $t \ge 0$

gilt.

Hinweis: Wenden Sie Teil a) auf die Funktion $V \circ \phi$ an.

(2 + 4 Punkte)