Thema Nr. 3 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten! Alle Lösungsschritte sind sorgfältig zu begründen!

Aufgabe 1

(12 Punkte)

- a) Zeigen Sie, dass die Gruppen ($\mathbb{R}\setminus\{0\}$, ·) und ($\mathbb{C}\setminus\{0\}$, ·) nicht isomorph sind.
- b) Zeigen Sie: Falls das Polynom $X^2 + a \in R[X]$ über einem Integritätsbereich R reduzibel ist, so ist -a ein Quadrat in R.
- c) Zeigen Sie, dass das Polynom $P = 5X^3 10X^2 \frac{5}{2}X + \frac{5}{3} \in \mathbb{Q}[X]$ irreduzibel ist.

Aufgabe 2 (12 Punkte)

Zur Erinnerung: Für eine Operation einer Gruppe G auf einer Menge Ω heißt $K:=\{g\in G: g\cdot \omega=\omega \text{ für alle }\omega\in\Omega\}$ der Kern der Operation. Im Fall $K=\{1_G\}$ heißt die Operation treu.

- a) Es sei G eine abelsche Gruppe, die treu und transitiv auf einer Menge Ω operiere. Zeigen Sie, dass der Stabilisator $Stab_G(\omega)$ für jedes $\omega \in \Omega$ gleich dem Kern der Operation von G auf Ω ist.
- b) Es sei G eine endliche abelsche Gruppe, die treu und transitiv auf einer endlichen Menge Ω operiere. Zeigen Sie, dass $|G| = |\Omega|$ ist.
- c) Geben Sie jeweils eine nichtabelsche endliche Gruppe G sowie eine treue und transitive Operation von G auf einer endlichen Menge Ω so an, dass gilt:
 - i) $|G| = |\Omega|$;
 - ii) $|G| \neq |\Omega|$.

Aufgabe 3 (12 Punkte)

- a) Es seien R ein Integritätsbereich und K ein Teilkörper von R. Ferner sei R ein endlichdimensionaler K-Vektorraum. Zeigen Sie, dass dann R ebenfalls ein Körper ist.
- b) Es sei F|K eine Körpererweiterung mit Zwischenkörpern L und M. Dabei sei M|K endlich. Ohne Beweis darf benutzt werden, dass $R:=\{\sum_{i=1}^n a_ib_i:n\in\mathbb{N},a_i\in L,b_i\in M\}$ ein Teilring von ML ist. Zeigen Sie, dass R ein endlichdimensionaler L-Vektorraum ist, wobei die Skalarmultiplikation durch Einschränkung der auf F gegebenen Multiplikation induziert werde.
- c) Zeigen Sie unter den Voraussetzungen von b), dass $[ML:L] \leq [M:K]$ ist.

Aufgabe 4 (12 Punkte)

Es seien $K = \mathbb{Q}(\sqrt{3}, \sqrt[3]{3}), \ \varepsilon := e^{2\pi i/3} \text{ und } L = K(\varepsilon).$

- a) Bestimmen Sie den Grad der Körpererweiterung $K|\mathbb{Q}$.
- b) Begründen Sie, warum $K|\mathbb{Q}$ nicht galoissch ist, $L|\mathbb{Q}$ hingegen schon.
- c) Bestimmen Sie die Mächtigkeit $|\operatorname{Gal}(L|\mathbb{Q})|$ der Galois-Gruppe $\operatorname{Gal}(L|\mathbb{Q})$ von $L|\mathbb{Q}$.
- d) Zeigen Sie, dass die Galois-Gruppe $\operatorname{Gal}(L|\mathbb{Q})$ nicht abelsch ist.

Aufgabe 5 (12 Punkte)

Es sei $b \in \mathbb{N}$ mit $b \geq 2$. Für jedes $n \in \mathbb{N}_0$ existieren eindeutig bestimmte $r_0, r_1, r_2, \ldots \in \{0, 1, \ldots, b-1\}$ mit $|\{i \in \mathbb{N}_0 : r_i \neq 0\}| < \infty$ und $n = \sum_{i=0}^{\infty} r_i b^i$. Man nennt $n = \sum_{i=0}^{\infty} r_i b^i$ die b-adische Entwicklung von n. Dies dürfen Sie ohne weiteren Beweis benutzen. Im Folgenden sei stets $n \in \mathbb{N}_0$ mit b-adischer Entwicklung $n = \sum_{i=0}^{\infty} r_i b^i$.

- a) Es sei $d \in \mathbb{N}$ mit $d \geq 2$, und es gelte $d \mid b^j$ für ein $j \in \mathbb{N}_0$ und $d \nmid b^i$ für alle i < j. Zeigen Sie:
 - i) genau dann gilt $d \mid n$, wenn $d \mid \sum_{i=0}^{j-1} r_i b^i$ gilt;
 - ii) im Fall $d = b^j$ gilt genau dann $d \mid n$, wenn $r_0 = \cdots = r_{j-1} = 0$ gilt.
- b) Es sei $d \in \mathbb{N}$ mit $d \ge 2$ und $d \mid b 1$.
 - i) Zeigen Sie, dass $n \equiv \sum_{i=0}^{\infty} r_i \pmod{d}$ ist.
 - ii) Bestimmen Sie das eindeutige $m \in \{0, ..., 8\}$ mit $154421643 \equiv m \pmod{9}$.