Thema Nr. 2 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten! Alle Lösungsschritte sind sorgfältig zu begründen!

Aufgabe 1 (12 Punkte)

a) Für eine Matrix $W \in \operatorname{Mat}_2(\mathbb{R})$ sei W^t die transponierte Matrix. Gibt es eine Matrix $W \in \operatorname{Mat}_2(\mathbb{R})$, so dass

$$W^t \cdot W = \left(\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array} \right)$$

gilt? Begründen Sie Ihre Antwort.

b) Es seien $n \in \mathbb{N}_{\geq 1}$ und $A \in \operatorname{Mat}_n(\mathbb{R})$ eine symmetrische Matrix. Das charakteristische Polynom von A sei gegeben durch

$$\chi_A(X) = X^n + s_1 X^{n-1} + \dots + s_r X^{n-r}$$

mit $s_1, \ldots, s_r \in \mathbb{R}$ und $s_r \neq 0$. Zeigen Sie, dass der Rang von A gleich r ist.

Aufgabe 2 (12 Punkte)

Es sei G die Untergruppe der $GL_2(\mathbb{F}_3)$, die von den Matrizen

$$A = \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$$

erzeugt wird.

a) Es sei $E \in GL_2(\mathbb{F}_3)$ die Einheitsmatrix. Beweisen Sie:

$$A^4 = E$$
, $B^2 = A^2$, $BAB^{-1} = A^3$.

- b) Zeigen Sie, dass man jedes Element in G eindeutig in der Form A^kB^l mit $0 \le k \le 3$ und $0 \le l \le 1$ darstellen kann. Bestimmen Sie die Ordnung von G.
- c) Zeigen Sie, dass G genau eine Untergruppe der Ordnung 2 besitzt.
- d) Es sei N die Untergruppe von G der Ordnung 2. Zeigen Sie, dass N ein Normalteiler in G ist, und bestimmen Sie den Isomorphietyp von G/N.

Aufgabe 3 (12 Punkte)

Sei $L\subseteq\mathbb{C}$ der Zerfällungskörper von $f(X)=X^4+1\in\mathbb{Q}[X]$ über $\mathbb{Q}.$

- a) Zeigen Sie, dass $L = \mathbb{Q}(i, \sqrt{2})$ gilt.
- b) Zeigen Sie, dass L genau drei Teilkörper vom Grad 2 hat, und geben Sie diese explizit an.

Aufgabe 4 (12 Punkte)

Es sei $f \in \mathbb{Z}[X]$ ein Polynom mit ganzzahligen Koeffizienten. Es gelte f(1) = 1 und f(2) = 2.

- a) Zeigen Sie, dass $f(a) \equiv 1 \pmod{a-1}$ und $f(a) \equiv 2 \pmod{a-2}$ für alle $a \in \mathbb{Z}$ mit $a \geq 3$ gilt.
- b) Weiter gelte f(10) > 10. Zeigen Sie, dass dann $f(10) \ge 82$ gilt.

Aufgabe 5 (12 Punkte)

Es sei p eine Primzahl, $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ der endliche Körper mit p Elementen und

$$R: \mathbb{Z}[X] \longrightarrow \mathbb{F}_p[X], \ f = \sum_{i=0}^n a_i X^i \longmapsto R(f) = \sum_{i=0}^n (a_i + p\mathbb{Z})X^i$$

die Reduktionsabbildung für Polynome. Weiter sei $h \in \mathbb{F}_p[X]$ ein irreduzibles Polynom und (h) das zugehörige Hauptideal im Ring $\mathbb{F}_p[X]$. Zeigen Sie, dass das Urbild $\mathfrak{m} := R^{-1}((h))$ ein maximales Ideal im Ring $\mathbb{Z}[X]$ bildet und der Körper $\mathbb{Z}[X]/\mathfrak{m}$ die Charakteristik p hat.