Thema Nr. 1 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten! Alle Lösungsschritte sind sorgfältig zu begründen!

Aufgabe 1 (12 Punkte)

Es sei $n \in \mathbb{N}_{\geq 1}$. Eine quadratische $(n \times n)$ -Matrix $B \in \operatorname{Mat}_n(\mathbb{C})$ heißt nilpotent, wenn ein $k \in \mathbb{N}_{\geq 1}$ mit $B^k = 0$ existiert. Wir bezeichnen mit $\operatorname{Nil}_n(\mathbb{C})$ die Teilmenge der nilpotenten Matrizen in $\operatorname{Mat}_n(\mathbb{C})$.

- a) Begründen Sie, warum eine nilpotente Matrix B in $\mathrm{Nil}_n(\mathbb{C})$ nur den Eigenwert 0 hat. Bestimmen Sie das charakteristische Polynom $\chi_B(X) \in \mathbb{C}[X]$ für $B \in \mathrm{Nil}_n(\mathbb{C})$.
- b) Die allgemeine lineare Gruppe $Gl_n(\mathbb{C})$ operiert auf der Menge $\mathrm{Mat}_n(\mathbb{C})$ durch Konjugation $Gl_n(\mathbb{C}) \times \mathrm{Mat}_n(\mathbb{C}) \to \mathrm{Mat}_n(\mathbb{C}), (A, B) \mapsto ABA^{-1}$. Dies dürfen Sie ohne Beweis benutzen. Zeigen Sie, dass diese Operation eine Operation von $Gl_n(\mathbb{C})$ auf der Teilmenge $\mathrm{Nil}_n(\mathbb{C})$ induziert.
- c) Bestimmen Sie für n := 4 mit Hilfe der Jordanschen Normalform die Anzahl der Bahnen für die in b) angegebene Operation der Gruppe $Gl_4(\mathbb{C})$ auf der Menge $Nil_4(\mathbb{C})$.

Aufgabe 2 (12 Punkte)

Sei p eine Primzahl, $n \in \mathbb{N}_{\geq 1}$ und \mathbb{F}_q ein Körper mit $q := p^n$ Elementen.

- a) Begründen Sie, warum ord $Gl_2(\mathbb{F}_q) = (q-1)^2 q(q+1)$ für die allgemeine lineare Gruppe $Gl_2(\mathbb{F}_q)$ über dem Körper \mathbb{F}_q gilt.
- b) Begründen Sie, warum ord $Sl_2(\mathbb{F}_q) = (q-1)q(q+1)$ für die spezielle lineare Gruppe $Sl_2(\mathbb{F}_q)$ über dem Körper \mathbb{F}_q gilt.
- c) Begründen Sie, warum jede Untergruppe von $\mathrm{Sl}_2(\mathbb{F}_q)$ der Ordnung q konjugiert zur Untergruppe

 $H:=\left\{egin{pmatrix}1&a\0&1\end{pmatrix} \ \middle|\ a\in\mathbb{F}_q
ight\}$

von $Sl_2(\mathbb{F}_q)$ ist. Begründen Sie, warum H kein Normalteiler in $Sl_2(\mathbb{F}_q)$ ist.

Aufgabe 3 (12 Punkte)

Es seien $a, b, c \in \mathbb{Z} \setminus \{0\}$. Weiter gelte auch $\frac{ab}{c} + \frac{bc}{a} + \frac{ca}{b} \in \mathbb{Z}$.

- a) Es sei $f(X) := (X \frac{ab}{c})(X \frac{bc}{a})(X \frac{ca}{b}) \in \mathbb{Q}[X]$. Zeigen Sie, dass f ganzzahlige Koeffizienten hat.
- b) Zeigen Sie, dass die rationalen Zahlen $\frac{ab}{c}$, $\frac{bc}{a}$ und $\frac{ca}{b}$ bereits in \mathbb{Z} liegen.

Aufgabe 4 (12 Punkte)

Wir betrachten das Polynom $f := X^4 - 4X^2 + 2 \in \mathbb{Q}[X]$.

- a) Bestimmen Sie die Nullstellen von f in den komplexen Zahlen \mathbb{C} .
- b) Für $\alpha := \sqrt{2 \sqrt{2}} \in \mathbb{R}$ sei $L := \mathbb{Q}(\alpha) \subseteq \mathbb{C}$. Berechnen Sie den Grad $[L : \mathbb{Q}]$.
- c) Begründen Sie, warum die Elemente $\sqrt{2}$ und $\beta := \sqrt{2 + \sqrt{2}}$ im Körper L liegen. Folgern Sie, dass L ein Zerfällungskörper für f über $\mathbb Q$ ist. Begründen Sie, warum $L|\mathbb Q$ eine Galois-Erweiterung ist.
- d) Zeigen Sie, dass ein eindeutig bestimmtes $\sigma \in \operatorname{Gal}(L|\mathbb{Q})$ mit $\sigma(\alpha) = \beta$ existiert. Berechnen Sie $\sigma(\sqrt{2})$ und $\sigma^2(\alpha)$. Zeigen Sie, dass die Galois-Gruppe von $L|\mathbb{Q}$ zyklisch ist.

Aufgabe 5 (12 Punkte)

Es sei $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$ der endliche Körper mit drei Elementen.

- a) Bestimmen Sie alle normierten, irreduziblen Polynome vom Grad 2 in $\mathbb{F}_3[X]$.
- b) Begründen Sie, warum der Faktorring $K := \mathbb{F}_3[X]/(X^2+1)$ ein Körper ist. Geben Sie die Anzahl der Elemente dieses Körpers K an.
- c) Zerlegen Sie das Polynom $f := X^8 1$ im Polynomring $\mathbb{F}_3[X]$ in irreduzible Faktoren.
- d) Geben Sie ein Polynom g in $\mathbb{F}_3[X]$ an, dessen Restklasse in K eine primitive 8-te Einheitswurzel ist.