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1.   Introduction

1.1   Mathematics didactics in teacher education for Gymnasium

Students preparing to teach mathematics at the Gymnasium (see WEIDIG 1992)

in Germany traditionally have to master a complete university education in

mathematics. This means that they are introduced to calculus, linear algebra,

analytical geometry, theory of functions, algebra, number theory, differential

geometry, differential equations, probabilit y and statistics, numerical mathe-

matics, etc. This mathematics is far beyond the elementary mathematics they

will  have to teach as future teachers. But the idea of this type of education is

that teachers can only present elementary mathematics at the Gymnasium in a

valid manner, if they are famili ar with the higher mathematics behind it. "Ele-

mentary Mathematics from an Advanced Standpoint" by F. KLEIN (1968) made

this notion explicit: a mathematics education of this type should make the future

teachers think mathematically.

But F. KLEIN also saw the need for lectures about the didactics of mathematics

in teacher education to help student teachers to think didactically. This was

supported by other university mathematicians such as A. PRINGSHEIM. As a

result lectures in didactics of mathematics were offered at some universities

(GRIESEL ,  STEINER 1992). This development was continued in the sixties by

mathematicians such as H. BEHNKE, H. KUNLE, D. LAUGWITZ and G. PICKERT,

who invited experienced teachers to offer lectures in didactics of mathematics.

It turned out that these lectures stimulated research in didactics of mathematics,
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and that the growing didactical research helped to improve these lectures. Very

typical were H.-G. STEINER's lectures in Münster. His lecture on the foundations

of geometry from a didactical point of view was published in 1966 (STEINER

1966a). During the following decades didactical theories for most of the ma-

thematical subject areas of the Gymnasium in Germany were developed, e.g.

algebra (VOLLRATH 1974), calculus linear algebra and stochastics (TIETZE,

KLIKA ,  WOLPERS 1982), calculus (BLUM ,  TÖRNER 1983), numerical ma-

thematics (BLANKENAGEL 1985), geometry (HOLLAND 1988), stochastics (BO-

ROVCNIK 1992). 

1.2   Reflecting on concepts in lectures on didactics of mathematics

In their mathematical education student teachers are expected to acquire hun-

dreds of mathematical concepts, to become acquainted with properties of these

concepts through hundreds of theorems, and to solve problems involving these

concepts. Relatively few of these concepts are relevant for their future teaching.

It turns out that their knowledge of these concepts is often as vague as their

knowledge of concepts in general. But for teaching, their metaknowledge about

concepts is absolutely insuff icient. Lectures on didactics of mathematics there-

fore have to reflect on concepts as they affect teaching. And this can be a

starting point for didactical thinking.

Questions should be discussed with student teachers which can help them to

arrive at central problems of didactics of mathematics. This paper reports about

questions on concept teaching and learning. It will show how students' reflec-

tions about their experience with mathematics lead to basic problems of concept

learning and teaching, and how elements of a theory of concept teaching can

give the student teachers a perspective for their future teaching.

Elements of a theory of concept teaching, as I understand it, were offered in my

book "Methodik des Begriff slehrens im Mathematikunterricht" (1984), which

was the result of empirical and analytical research on concept teaching. This
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research has been continued in recent years. I want to show in this paper how it

was stimulated by discussions with student teachers, and vice versa how this

research has stimulated the discussions.

Many student teachers contributed to this research by investigations connected

with a thesis for their examination. As a side effect, most of my student teachers

felt that the lectures in didactics of mathematics also helped them to understand

their "higher" mathematics better.

2   Starting points for didactical thinking

2.1   Evaluation of mathematical concepts

At the beginning of my lectures on didactics of calculus I usually ask my stu-

dent teachers: "What are the central concepts of calculus?" They suggest con-

cepts like real number, function, derivative, integral, limit, sequence, series, etc.

At some point a discussion starts whether a certain concept is "central". This

can happen with concepts such as boundary, monotony, accumulation point, etc.

Ultimately the students feel a need for a discussion about the meaning of the

term "central concept". Obviously there is no definition for this term. But one

can argue for a certain concept to be central or not. For example calculus is

about functions. But calculus deals with functions in a specific manner: one is

interested in the derivative and in the integral of functions. Forming these

concepts was the beginning of calculus in history. But for a certain class of

functions the derivative and the integral can be found algebraically. Calculus

really starts at functions which need limits to find the derivatives and the inte-

gral. Therefore one could say that the central concept is the concept of limit.

(Although calculus without limits is possible to some extent, e.g. LAUGWITZ

1973.) On the other hand, the concept of limit needs the concepts of real num-

ber and function, which can therefore also be called "central concepts".

One might think that this is a rather academic discussion. But questions like this

are essential when one plans a calculus course for the Gymnasium. A key
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problem then is the choice of concepts which have to be taught in this course.

This calls for an evaluation of concepts in the context of teaching (This might

lead to different results!).

There seems to be a tendency to put too much emphasis on the use of a concept.

But OTTE has pointed out that concepts have to be seen both as objects and

tools. Therefore concepts offer both knowledge and use. An adequate evalua-

tion of concepts from the standpoint of teaching therefore has to take into

account both these properties and how they complement each other. OTTE and

STEINBRING worked this out for the concept of continuity (1977); FISCHER

compared the concepts of continuity and derivative from this point of view

(1976). One important approach to the evaluation process is through historical

analysis of the development of the concept, which incorporates intentions,

definitions, properties, applications, etc (see: chapter 8).

For example: Concept formation is very often embedded in problem solving. A

historical analysis of the relationship between concept formation and problem

solving can reveal different roles which concepts can play (VOLLRATH 1986).

Infinite series were introduced as instruments for solving problems of calcula-

ting areas of surfaces. But infinite series also became solutions of problems

when they were used to develop functions into series, e.g. sine, logarithms.

When the concept of infinite series was established in calculus it turned out to

be a source of new problems. The critical conceptual work in infinite series

became an aid for precising the problem of "infinite addition". The concept of

absolutely convergent series, with the possibilit y of rearranging the terms,

served as means for guaranteeing a certain method.

This analysis shows different possibiliti es for embedding concept teaching into

problem solving processes. Obviously this gives rise to specific conceptual

images through the process of teaching. By these considerations the student

teachers can get an idea of a genetic problem-oriented approach to the teaching

of concepts. The perspective of different roles of concepts can help them to

build up a repertoire of different modes of concept teaching in mathematics
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education.

When a mathematical concept is taught in school the students are not only

expected to understand it, but also to know its importance (WINTER 1983).

Investigations show (VOLLRATH 1988) that there are different ways for the

teacher to express his own appreciation of a concept. Explicit expressions based

on reasons seem to be most effective. But the future teachers must learn to

accept students' evaluations as expressions of their personality also when they

differ from their own appreciation of a concept.

2.2   Relationships between mathematical concepts

During our discussion about the central concepts of calculus we refer to rela-

tionships between concepts. This can be the starting point for further investiga-

tions (VOLLRATH 1973). For example I ask my student teachers for the different

types of sequences. A possible collection is: rational sequence, real sequence,

constant sequence, arithmetical sequence, geometrical sequence, convergent

sequence, zero-sequence, bounded sequence, increasing sequence, decreasing

sequence, finally constant sequence, Cauchy-sequence, convergent sequence

with rational limit, etc. We then try to get an overview. Theorems such as:

Every convergent sequence is bounded.

or: Every increasing and bounded sequence is convergent.

lead to a hierarchy of concepts (VOLLRATH 1973). The student teachers discover

that knowledge of calculus does not only mean knowledge of concepts but also

of relationships between concepts. They become aware of the importance of

networked learning.

The study of the hierarchy of concepts leads to the didactical problem of arran-

ging the concepts for teaching in school. In a first approach different teaching

sequences are formed and discussed from the point of view of teaching and

learning. But it is also necessary to provide opportunities for the students to
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discover relationships between concepts. 

From a systematic point of view it seems convenient to start with the most

general concept and to arrive at special concepts. But there can also be reasons

for going the opposite way. There has been a long discussion in pedagogy

whether one should procede from the general to the special or vice versa. Didac-

ticians know that this question is too general. Didactics of mathematics is

looking for more specific answers. More particularly, didacticians agree that

there are many different ways of learning a network of concepts so that the

concepts are understood and mastered, and so that the relationship between

them is known and can be used. 

2.3   Structural analysis of mathematical concepts

Our discussions about the essentials of calculus lead to the real numbers as the

basis of calculus. One can then continue the investigation by asking which

property of the real numbers is needed to satisty the specific requirements of

calculus. Analysing the central concepts, theorems and proofs of calculus leads

to the discovery of the well -known fact, that the real number system is "com-

plete". For most of the students this means that nested intervals always contain

one real number. The student teachers will perhaps learn that completeness can

also be expressed in terms of Dedekind-sections or Cauchy-sequences. But

STEINER (1966 b) showed that completeness has to do not only with the method

by which the real numbers are constructed in terms of rational numbers. His

paper revealed that completeness is equivalent to the propositions of the fun-

damental theorems of calculus, e.g. the intermediate value property, the Heine-

Borel property or the Bolzano-Weierstrass property. This study helps the stu-

dent teachers to understand the fundamentals of calculus better.

But the great variety of the 12 different properties expressing completeness in

Steiner's paper raises questions relevant to teaching. A starting question could

be: Which property should be used in mathematics instruction (grade 9) to
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introduce the completeness of the real numbers? And again it is not just the

answer which matters, but more importantly the reasoning. Moreover, reasons

can refer to both knowledge and use. One can discuss which property offers

most knowledge and best use in the easiest way. But although didactics tries to

optimize teaching and learning (GRIESEL 1971, p. 73), it must not be neglected

that each property reveals a certain aspect of real numbers which emerged at a

certain period in the history of the development of the concept.

Although there are different possible approaches, which are equivalent from a

systematical point of view, "easy" ways can be misleading. For example de-

fining convexity of a function by its derivatives, or defining logarithm as an

integral of 1/x is "putting the cart before the horse" (KIRSCH 1977).

We took this discussion about completeness as an example of a structural

analysis which was an interesting didactical problem in the sixties. Things

change, nowadays problems of applications of calculus seem to be more inter-

esting. Certainly this change of interest can also be a point of reflection.

2.4   Logical analysis of definitions

When we talk about the definitions of the central concepts of calculus most of

my student teachers confess that they have had diff iculties in understanding

these definitions. We then want to find out the reasons for these diff iculties.

Certainly one problem is the complex logical structure of the definitions. Take

for example continuity:

A function f is said to be continuous at xo iff

for all positive �  there exists a positive 
�
, such that, 

for all x if � x - xo � < �  then � f(x) - f(xo) �  < � .

It is especially the "tower of quantifiers" "for all "..."there exists"... "for all " -

and the implication "if...then", which causes the diff iculties.
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Therefore one would look for equivalent but less complex definitions. Different

calculus books help my students to find a lot of definitions and to compare them

from the perspective of logical structure. Obviously the diff iculties are only

shifted by the "simpler" definition:

A function f is said to be continuous in xo iff

lim
x� xo

f(x) � f(xo).

Now the problems are contained in the definition of the limit.

Discussions like these have a long tradition in the didactics of calculus. There

are some psychological findings (e.q. disjunctive definitions are more diff icult

to learn than conjunctive definition; see CLARK 1971) which can support judge-

ments. But they are not very surprising.

Another possibilit y is to restrict the concepts of calculus. A very interesting

approach is the Lipschitz-calculus (KARCHER 1973), where for example the

definition of L-continuity is logically simpler then the definition of continuity in

general.

But finally, the whole problem of generalization and formalization in calculus

teaching has become problematic. Historical considerations make clear that the

epsilon-delta form of the definition is the result of a long process of rigorising

which was completed by the end of the last century (FISCHER 1978). Teaching

should give students a chance to experience a similar process in concept lear-

ning. For this reason there is a renewed interest in more intuitive approaches to

calculus in the Gymnasium (e.g. BLUM ,  KIRSCH 1979). A historical discussion

about the development of rigour in calculus can help students to understand

better the use of all the "epsilon-delta-stuff " of calculus.

As an excellent example of a stepwise, increasingly precise approach to the

concepts of calculus I present to my student teachers the introduction to conti-

nuity by OSTROWSKI (1952) where a sequence of trial, critique, further trial,...
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finally leads to the epsilon-delta-definition. 

2.5   Understanding of concepts

Didactical discussions about concepts soon arrive at the problem of under-

standing. What does it mean to understand a concept? The first answer of

student teachers is usually, "to know a definition". But this answer can easily

provoke a discussion. A definition can be learnt by heart without beeing under-

stood. They soon find out that one has to describe understanding of a concept

by means of abiliti es; e.g. to be able to give examples – to give counterexamples

– to test examples – to know properties – to know relationships between con-

cepts - to apply knowledge about the concept. Abilit ies like these can be tested.

But it is more diff icult to describe what we mean by "having images of a con-

cept", "to appreciate a concept", "knowing the importance of a concept".

Discussions soon lead to the insight that there are stages of understanding. This

view has a long tradition. And there are also "master pieces" on presenting

concepts in stages. A good example is MANGOLDT ,  KNOPP's introduction to

integration. It starts with an intuitive approach on the basis of area functions.

After this, integrals are calculated. And in a third stage, a lot of conceptual work

on defining integrals is done (1965).

Considerations like these help the students to understand stage-models of

understanding (see: DYRSZLAG 1972, VOLLRATH 1974, HERSCOVICS ,  BERGE-

RON 1983).

The need for better understanding leads to the discovery that there is no final

understanding. This is a sort of paradox: understanding is both a goal and a

process. And there are further paradoxes of understanding (VOLLRATH 1993).

They have their origin in the nature of mathematical knowledge (see: JAHNKE

1978, KEITEL,OTTE ,  SEEGER 1980, STEINBRING 1988).
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2.6   Forming mathematical concepts

The strangest question for my student teachers is: "Have you ever formed a new

mathematical concept on your own?" They are generally very puzzled by this

question. I always get the answer: "No!" And sometimes they ask me: "Should

we have done so?"

For most of the student teachers university education in mathematics means

receptive learning. They can be creative to some extent in problem solving when

they find a solution, perhaps on the basis of an original idea. But they will never

be asked to form a new concept. Some students have perhaps written poems on

their own, they have painted pictures, they have composed melodies, they have

made biological, chemical, or physical experiments. But why don't they develop

mathematics on their own? We all feel that they will have no real chance of

inventing an important piece of mathematics. But isn't this also true for their

poetry, their painting, their music, their biology, chemistry, or physics? Perhaps

it is "the power of the mathematical giants" that discourages students for ma-

king mathematics.

As an example, I try to encourage my student teachers to invent a new type of

real sequence just by thinking out a certain property. Maybe one chooses as the

property of a sequence (an): 

an = 0 for indefinitely many n.

At first one will t hink of a suitable name for this type of sequence. Let us call it

a "stutter-sequence". Does there exist a stutter-sequence? Is every sequence a

stutter sequence? These questions ask for examples and counterexamples. What

about the sum or the product of stutter sequences? Are they stutter-sequences

too? What is the relationship to other sequences? Answers can be formulated as

theorems which form a small piece of theory. These steps are routines. But most

of my students are not famili ar with these routines. How then will t hey adequa-

tely teach their future students about concept formation? Students in general do

not think of  mathematics as a subject in which they can be creative. Concept
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formation offers the possibilit y of creative thinking in mathematics (VOLLRATH

1987).

2.7   Thinking in concepts

From a formalistic point of view, the names of mathematical concepts are

arbitrary. But to some extent the name often expresses an image . "Continuous"

is a term which bears intuitions. This is also true for terms like "increasing",

"decreasing", "bounded" etc. On the other hand, "derivative" and "integral" give

no hints to possible meanings. Most of my student teachers are famili ar with the

fact that a name does not give suff icient information about a concept. But there

is some research suggesting that most students in school refer to the meaning of

the concept name and not to a definition. There is also research which indicates

that images evoked by the everyday meaning of the name are responsible for

misunderstanding the concept (VIET 1978, VOLLRATH 1978). 

On one hand, students have to learn that the meaning of a mathematical concept

has to be defined. On the other hand, it is true that certain images, ideas and

intentions lead to definitions which stress certain aspects but disregard others.

The concept of sequence can be defined as a function defined on the set of

natural numbers. This stresses the image of mapping, whereas the idea of

succession is left in the background. The same is true for many of the central

concepts of calculus. This was pointed out very clearly by STEINER (1969) in his

historical analysis of the function concept, and it was investigated for many of

these concepts by FREUDENTHAL in his "Didactical Phenomenology" (1983).

2.8   Personal shaping of mathematical concepts

When a mathematician wants to define a concept then there is not much free-

dom for him to formulate the defining property. Some authors prefer to use

formal language, others try to avoid it as much as possible. A comparison of



12

text books from the same time shows rather littl e variety of styles.  A compari-

son between text-books with similar objectives of different times reveals more

differences. But again, this is more a congruence of developing standards than

the expression of different personaliti es.

However, during the development of an area of mathematics, concept formation

is strongly influenced by the leading mathematician at the time. This has been

true for calculus. There are fundamental differences in the ways Leibniz and

Newton developed calculus. A historical analysis can still i dentify their diffe-

rent fundamental ideas in modern calculus. The same is true for the theory of

functions of a complex variable. One can still see today the different approaches

of Riemann and Weierstrass in a modern presentation of the theory. It is possi-

ble to speculate with KLEIN that their different "characters" are responsible for

the different ways of building up the theory (1926; p. 246). But it is more

helpful to concentrate on the differences in experience, intention, and image as

the decisive influences on concept formation.

A lecture on the didactics of calculus should give the student teachers an

opportunuty to recognize different sources of central parts of the theory, to get

acquainted with the mathematicians who pushed forward the development, and

to become aware of their motives and images.

Although mathematics has a universal quality when presented in highly develo-

ped theories, one should not forget the fact that there are women and men

behind it who have influenced the development.

When mathematicians want to learn a new theory they read or hear definitions

and at once use certain routines to understand the new concepts. They are at

ease when they find that the new concept fits into their existing network of

concepts, when it corresponds with their own images, knowledge and experien-

ce. They feel resistant to the new concept when they encounter discrepancies. In

any case, learning a new concept involves an active process of concept forma-

tion. Very often this is accompanied by feelings of interest or resistance. And

this is something that the student teachers will often have experienced in their
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own mathematical education at the university.

However many of them have the idea that teaching concepts means to present as

much knowledge about the concept as they can in as interesting a manner as

possible. This is a point at which student teachers can encounter results of

communication analysis (ANDELFINGER 1984, VOIGT 1991), which show that

students often resist when they are expected to learn new concepts. As a conse-

quence they often form "personal concepts" which differ from their teacher's

concepts. And it is surprising that this may occur even though they can solve a

lot of problems about the concept correctly. This should sensitize the student

teachers to comments made by the students which they will hear when they

observe mathematics instruction in their school practice.

2.9   Strategies of concept teaching

Finally, we arrive at a rather delicate problem. When the student teachers look

at their own experience as learners of mathematics they all know that there are

teachers, professors and authors who are very effective in teaching concepts,

whereas others raise many diff iculties for the learners. What is the mystery of

successful teaching? Is there an optimal way of teaching concepts?

The preceding discussions will protect the student teachers from giving simple

answers. They are aware that learning concepts is rather complex. It is not

diff icult for them to criticize empirical studies testing the effectiveness of

"method A" versus  "method B". They can also easily identify the weaknesses

of investigations about the effectiveness of artifical methods such as those used

in psychological testing (e.g. CLARK 1971). They soon find out that one needs

a theory of teaching in the background as a basis for making decisions. A good

example of such a theory is genetic teaching (e.g. WITTMANN 1981), which can

be used to give a sense of direction.

To master the complexity of concept teaching the students find that they need to

look at the relevant variables.
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Teaching mathematical concepts has to take into consideration

(i) the students: their cognitive structures, their intellectual abiliti es,

their attitudes, and their needs;

(ii ) the concepts: different types of concept, logical structure of de-

finitions, context, development of concepts;

(iii ) the teachers: their personality, their intentions, their background.

Behind each of these variables there is a wide variety of theories (see: VOLL-

RATH 1984). It is impossible to present these theories to the students. However,

they can be sensitized to the problems and can get references to literature for

further study. Some of these problems can also be touched on in exercises and

at seminars.

These considerations help the student teachers to get a differentiated view of

teaching: concept teaching has to be planned with respect to these variables.

A reasonable plan for teaching a concept in a certain teaching situation is called

a strategy. My practise is to look at strategies for teaching concepts by conside-

ring diff erent ranges of strategies (VOLLRATH 1984). Local strategies refer to

the plan of a teaching unit which is applicable for standard concepts like ra-

tional function, bounded function, step-function, etc. Regional strategies serve

for planning the teaching of key concepts in teaching sequences such as the

concept of limit, derivative, or integral of a function.

Global strategies are needed for leading concepts which permeate the whole

curr iculum, for example the concept of function is a candidate for such a lea-

ding concept.

The student teachers get the opportunity to study models of these types of

strategy from "didactical masterpieces" (see also WITTMANN 1984). And they

are invited to develop strategies on their own for some examples of different

ranges.
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Finally, the student teachers should get some hints how to evaluate certain

strategies. The most important goal is that they can reason, without being dog-

matic. It would be a disaster if didactics of mathematics as a science were to

prop up educational dogma.
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