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1. Introduction

1.1 Mathematicsdidacticsin teacher education for Gymnasium

Students preparing to tead mathematics at the Gymnasium (see WEIDIG 1992
in Germany traditionally have to master a complete university education in
mathematics. This means that they are introduced to cdculus, linea algebra,
analyticd geometry, theory of functions, algebra, number theory, differential
geometry, differential equations, probability and statistics, numericd mathe-
matics, etc. This mathematics is far beyond the dementary mathematics they
will have to teat as future teaders. But the ideaof this type of educaionis
that teachers can only present elementary mathematics at the Gymnasium in a
valid manner, if they are famili ar with the higher mathematics behind it. "Ele-
mentary Mathematics from an Advanced Standpant” by F. KLEIN (1968 made
this nationexpli cit: amathematics education d thistype shoud makethefuture
teaders think mathematically.

But F. KLEIN also saw the need for lectures abou the didadics of mathematics
in teader educaion to help student teaders to think didactically. This was
suppated by other university mathematicians such as A. PRINGSHEIM. As a
result ledures in ddadics of mathematics were offered at some universities
(GRIESEL , STEINER 1992. This development was continued in the sixties by
mathematicians sich asH. BEHNKE, H. KUNLE, D. LAUGWITZ and G. PICKERT,
who invited experienced teatersto dfer leduresin ddadics of mathematics.
It turned ou that these lectures gimulated research in ddadics of mathematics,
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and that the growing didadicd reseach helped to improve theseledures. Very
typicd wereH.-G. STEINER'sleduresin Munster. Hisledure onthefounditions
of geometry from a didadicd point of view was pullished in 1966(STEINER
19663). During the following decales didadica theories for most of the ma-
thematica subjed areas of the Gymnasium in Germany were developed, e.g.
algebra (VOLLRATH 19749, cdculus linea agebra and stochastics (TIETZE,
KLIKA , WOLPERS 1982, cdculus (BLuM , TORNER 1983, numericd ma
thematics (BLANKENAGEL 1985, geometry (HOLLAND 1988, stochastics (Bo-
ROVCNIK 1992).

1.2 Reflecting on conceptsin lectureson didactics of mathematics

In their mathematicd educaion student teaders are expeded to aaquire hun
dreds of mathematica concepts, to become a@juainted with properties of these
concepts through hundeds of theorems, and to solve problems involving these
concepts. Relatively few of these mnceptsarerelevant for their future teading.
It turns out that their knowledge of these mncepts is often as vague @ their
knowledge of conceptsin general. But for teading, their metaknowledge bou
conceptsis absolutely insufficient. Ledures on ddadics of mathematics there-
fore have to refled on concepts as they affed teading. And this can be a
starting paint for didadicd thinking.

Questions shoud be discussed with student teaders which can help them to
arrive at centra problems of didadics of mathematics. This paper reports abou
guestions on concept teaching andlearning. It will show how students' reflec
tionsabou their experiencewith mathematicslead to basic problems of concept
leaning and teading, and hav elements of a theory of concept teading can
give the student teaders a perspedive for their future teading.

Elements of atheory of concept teading, as| understandit, were offered in my
bodk "Methodk des Begriffslehrens im Mathematikunterricht" (1984, which
was the result of empiricd and analyticd researcch onconcept teading. This
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reseach has been continued in recant yeas. | want to show in this paper how it
was stimulated by discussons with student teaders, and vice versa how this
reseach has gimulated the discussons.

Many student teaders contributed to this reseach by investigations conreded
with athesisfor their examination. Asaside eff ed, most of my student teaders
felt that the leduresin ddadics of mathematics also hel ped them to understand
their "higher" mathematics better.

2 Starting pointsfor didactical thinking

2.1 Evaluation of mathematical concepts

At the beginning of my ledures on ddadics of caculus| usually ask my stu-
dent teaders: "What are the central concepts of caculus?' They suggest con-
ceptslikered number, function, cerivative, integral, limit, sequence series, etc.
At some point a discusson starts whether a cetain concept is "central”. This
can happen with concepts such asboundiry, monaony, acaimulation pant, etc.
Ultimately the students fed a need for a discusson abou the meaning of the
term "central concept”. Obviously there is no definition for this term. But one
can argue for a cetain concept to be central or not. For example cdculus is
abou functions. But caculus deds with functions in a spedfic manner: oneis
interested in the derivative and in the integral of functions. Forming these
concepts was the beginning of cdculus in history. But for a catain class of
functions the derivative and the integral can be foundalgebraicdly. Calculus
realy starts at functions which neel limits to find the derivatives and the inte-
gral. Therefore one muld say that the central concept is the concept of limit.
(Although cdculus without limits is posgble to some extent, e.g. LAUGWITZ
1973) On the other hand, the ancept of limit needs the concepts of red num-
ber and function, which can therefore dso be cdled "central concepts”.

One might think that thisisarather acalemic discusson. But questionslikethis
are esential when ore plans a cdculus course for the Gymnasium. A key
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problem then is the choice of concepts which have to be taught in this course.
This cdlsfor an evaluation d conceptsin the mntext of teading (This might
lead to dff erent results!).

There seansto be atendency to pu too much emphasis onthe use of a cncept.
But OTTE has pointed ou that concepts have to be seen bah as objeds and
todls. Therefore concepts off er bath knowledge and wse. An adequate evalua
tion of concepts from the standpant of teading therefore has to take into
acourt bath these properties and hav they complement ead ather. OTTE and
STEINBRING worked this out for the concept of continuity (1977); FISCHER
compared the concepts of continuity and derivative from this point of view
(1976. Oneimportant approac to the evaluation processis through historicd
analysis of the development of the concept, which incorporates intentions,
definitions, properties, applications, etc (see chapter 8).

For example: Concept formationis very often embedded in problem solving. A
historicd analysis of the relationship between concept formation and problem
solving can reved diff erent roles which concepts can play (VOLLRATH 1986.
Infinite series were introduced as instruments for solving roblems of cdcula
ting areas of surfaces. But infinite series also became solutions of problems
when they were used to develop functions into series, e.g. sine, logarithms.
When the concept of infinite series was established in cdculusiit turned ou to
be a source of new problems. The aiticd conceptua work in infinite series
becane an aid for predsing the problem of "infinite addition”. The cncept of
absolutely convergent series, with the passbility of rearanging the terms,
served as means for guarantedng acertain method

Thisanalysis shows diff erent posshiliti es for embedding concept teading into
problem solving processes. Obviously this gives rise to specific conceptual
images through the process of teaching. By these mnsiderations the student
teaders can get an ideaof agenetic problem-oriented approach to the teading
of concepts. The perspedive of different roles of concepts can help them to
build up a repertoire of different modes of concept teating in mathematics



educaion.

When a mathematicad concept is taught in schod the students are not only
expeded to uncerstand it, but also to know its importance (WINTER 1983.
Investigations show (VOLLRATH 198§ that there ae different ways for the
teader to expresshisown appredation d a ancept. Explicit expressons based
on reasons ean to be most effedive. But the future teadiers must lean to
accept students' evaluations as expressons of their personality also when they
differ from their own appredation d a @mncept.

2.2 Relationships between mathematical concepts

During our discusson abou the central concepts of caculus we refer to rela
tionships between concepts. This can be the starting point for further investiga-
tions (VOLLRATH 1973. For example | ask my student teadersfor the diff erent
types of sequences. A posshle mlledionis: rational sequence, red sequence,
constant sequence, arithmeticd sequence, geometricd sequence, convergent
sequence, zero-sequence, bounakd sequence, increasing sequence deaeasing
sequence, finally constant sequence Cauchy-sequence, convergent sequence
with rational limit, etc. We then try to get an overview. Theorems such as:

Every convergent sequenceis bounad.
or: Every increasing and bouned sequenceis convergent.

lead to ahierarchy of concepts (VOLLRATH 1973. The student teadersdiscover
that knowledge of cdculus does not only mean knowledge of concepts but also
of relationships between concepts. They beaome avare of the importance of
networked learning.

The study of the hierarchy of conceptsleadsto the didadica problem of arran-
ging the concepts for teading in schod. In afirst approach dff erent teading
sequences are formed and dscussed from the point of view of teading and
leaning. But it is also necessary to provide oppatunities for the students to
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discover relationships between concepts.

From a systematic point of view it seems convenient to start with the most
general concept andto arrive & special concepts. But there can also be reasons
for going the oppasite way. There has been a long discusgon in pedagogy
whether one shoud procede fromthe general to the spedal or viceversa. Didac
ticians know that this question is too general. Didadics of mathematics is
looking for more spedfic answers. More particularly, didadicians agreethat
there are many different ways of leaning a network of concepts  that the
concepts are understood and mastered, and so that the relationship between
them isknown and can be used.

2.3 Structural analysis of mathematical concepts

Our discussons abou the esentials of cdculus leal to the red numbers asthe
basis of cdculus. One can then continue the investigation by asking which
property of the red numbers is needed to satisty the spedfic requirements of
cdculus. Analysing the cantral concepts, theorems and proofs of cdculusleads
to the discovery of the well-known fad, that the red number system is"com-
plete”. For most of the students this means that nested intervals always contain
onered number. The student teaders will perhaps lean that completenesscan
also be expressd in terms of Dedekind-sedions or Cauchy-sequences. But
STEINER (1966 b showed that completenesshasto do na only with the method
by which the red numbers are cnstructed in terms of rational numbers. His
paper reveded that completenessis equivalent to the propasitions of the fun-
damental theorems of cdculus, e.g. theintermediate value property, the Heine-
Borel property or the Bolzano-Weierstrassproperty. This gudy helps the stu-
dent teaters to understand the fundamentals of cdculus better.

But the grea variety of the 12 dff erent properties expressng completenessin
Steiner's paper raises questions relevant to teading. A starting question could
be: Which property shoud be used in mathematics instruction (grade 9) to
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introduce the cmpleteness of the red numbers? And again it is nat just the
answer which matters, but more importantly the reasoning. Moreover, reasons
can refer to bah knowledge and wse. One can discusswhich property offers
most knowledge and best usein the eaiest way. But athough didadicstriesto
optimizeteading andleaning (GRIESEL 1971,p. 73, it must nat be negleded
that eat property reveds a cetain asped of red numbers which emerged at a
certain periodin the history of the development of the mncept.

Although there ae diff erent possble gproades, which are equivalent from a
systematicd point of view, "easy" ways can be mislealing. For example de-
fining convexity of a function by its derivatives, or defining logarithm as an
integral of 1/x is"putting the cat before the horse" (KIRSCH 1977).

We took this discusson abou completeness as an example of a structural
analysis which was an interesting didadical problem in the sixties. Things
change, nowadays problems of applicaions of cdculus san to be more inter-
esting. Certainly this change of interest can also be apoint of refledion.

2.4 Logical analysis of definitions

When we talk abou the definitions of the central concepts of caculus most of
my student teaders confessthat they have had dfficulties in understanding
these definitions. We then want to find ou the reasons for these difficulties.

Certainly one problemisthe complex logicd structure of the definitions. Take
for example continuity:

A functionfis sid to be mntinuous at X, iff
for all paositive e there eists a positive 6, such that,
for all xif |x- x,|< & then |f(x) - f(x;)| <e.

It is espeddly the "tower of quantifiers' "for al"..."there eists"... "for al" -
and the implicaion "if...then", which causes the difficulties.
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Therefore onewould look for equivalent but lesscomplex definiti ons. Diff erent
cdculus books help my studentsto findalot of definitions and to compare them
from the perspedive of logicd structure. Obviously the difficulties are only
shifted by the "simpler" definition:

A functionfis sid to be mntinuowsin x, iff

lim f(x) = f(x).

X+ Xo

Now the problems are mntained in the definition d the limit.

Discussons like these have along traditionin the didadics of cdculus. There
are some psychdogicd findings (e.q. dsjunctive definitions are more difficult
tolean than conjunctive definition; seeCLARK 1971 which can suppat judge-
ments. But they are nat very surprising.

Another posshility is to restrict the mncepts of cdculus. A very interesting
approac is the Lipschitz-cdculus (KARCHER 1973, where for example the
definition of L-continuity islogicdly simpler then the definition d continuity in
general.

But finally, the whole problem of generalization and formalizaionin cadculus
teading has become problematic. Historicd considerations make dea that the
epsilon-deltaform of the definitionis the result of along processof rigorising
which was completed by the end d the last century (FISCHER 1978. Teading
shoud give students a chance to experience asimilar processin concept lea-
ning. For thisreasonthereis arenewed interest in more intuitive gproachesto
cdculusin the Gymnasium (e.g. BLuM , KIRSCH 1979. A historical discusdon
abou the development of rigour in cdculus can help students to uncerstand
better the use of all the "epsilon-delta-stuff" of cdculus.

As an excdlent example of a stepwise, increasingly predse gproach to the
concepts of caculus | present to my student teaders the introduction to conti-
nuity by OsTrowskI (1952 where asequence of trid, critique, further tridl,...
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finally leads to the gosil on-delta-definition.

2.5 Understanding of concepts

Didadicd discussons abou concepts son arrive & the problem of under-
standing. What does it mean to understand a oncept? The first answer of
student teadiers is usually, "to know a definition”. But this answer can easily
provoke adiscusson. A definition can beleant by heat without beéng under-
stood. They soonfind ou that one has to describe understanding of a concept
by means of abiliti es; e.g. to be életo give examples—to give murterexamples
— to test examples — to know properties — to know relationships between con-
cepts - to apply knowledge aou the mncept. Abilitieslike these can be tested.
But it is more difficult to describe what we mean by "having images of a con+
cept", "to appredate a oncept”, "knowing the importance of a cncept”.

Discusgons oonleal to theinsight that there ae stages of understandng. This
view has a long tradition. And there are dso "master pieces' on presenting
concepts in stages. A good example is MANGOLDT , KNOPPS introduction to
integration. It starts with an intuitive gproach onthe basis of areafunctions.
After this, integralsare cdculated. Andin athird stage, alot of conceptual work
on defining integralsis dore (1965.

Considerations like these help the students to understand stage-models of
understanding (see DYRSZLAG 1972 VOLLRATH 1974,HERSCOVICS, BERGE-
RON 1983.

The neda for better understanding leads to the discovery that there is no final
understanding. This is a sort of paradox understanding is both a goal and a
process And there ae further paradoxes of understanding (VOLLRATH 1993.
They have their origin in the nature of mathematicd knowledge (see JAHNKE
1978,KEITEL,OTTE, SEEGER 1980,STEINBRING 1988.
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2.6 Forming mathematical concepts

The strangest questionfor my student teadersis. "Have you ever formed anew
mathematica concept on your own?"' They are generaly very puzzed by this
guestion. | always get the answer: "No!" And sometimes they ask me: "Shoud
we have dore so?"

For most of the student teadiers university educaion in mathematics means
receotiveleaning. They can be aediveto some extent in problem solving when
they find asolution, perhaps onthe basis of an ariginal idea But they will never
be aked to form a new concept. Some students have perhaps written peems on
their own, they have painted pictures, they have mmposed melodies, they have
made biologicd, chemicd, or physica experiments. But why dont they develop
mathematics on their own? We dl fed that they will have no red chance of
inventing an important pieceof mathematics. But isn't this also true for their
poetry, their painting, their music, their biology, chemistry, or physics? Perhaps
it is "the power of the mathematicd giants' that discourages gudents for ma-
king mathematics.

As an example, | try to encourage my student teaders to invent a new type of
red sequencejust by thinking out a cetain property. Maybe one chooses asthe

property of a sequence(a,):
a, = O for indefinitely many n.

At first one will think of asuitable namefor thistype of sequence Let uscdl it
a "stutter-sequence’. Does there exist a stutter-sequence? Is every sequence a
stutter sequence? These questions ask for examples and courterexamples. What
abou the sum or the product of stutter sequences? Are they stutter-sequences
too? What istherelationship to ather sequences? Answers can beformulated as
theoremswhich form asmall pieceof theory. These steps are routines. But most
of my students are nat famili ar with these routines. How then will t hey adequa-
tely tead their future students about concept formation? Studentsin general do
nat think of mathematics as a subjed in which they can be aeaive. Concept
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formation off ersthe posshilit y of creativethinkingin mathematics (VOLLRATH
1987).

2.7 Thinkingin concepts

From a formalistic point of view, the names of mathematicd concepts are
arbitrary. But to some extent the name often expresses animage . "Continuots"
is aterm which beas intuitions. This is also true for terms like "increasing"”,
"deaeasing”, "bounded" etc. Onthe other hand," derivative" and"integra" give
no hintsto pessble meanings. Most of my student teaders are famili ar with the
fad that a name does not give sufficient information about a awncept. But there
is some reseach suggesting that most studentsin schod refer to the meaning of
the concept name and nd to a definition. Thereis also research which indicaes
that images evoked by the everyday meaning of the name ae resporsible for
misunderstanding the concept (VIET 1978,VOLLRATH 1978.

On ore hand, students haveto lean that the meaning of a mathematical concept
has to be defined. On the other hand, it is true that certain images, ideas and
intentions leal to definitions which stresscertain aspeds but disregard athers.
The concept of sequence can be defined as a function defined onthe set of
natural numbers. This dresses the image of mapping, whereas the idea of
successonis left in the background. The same is true for many of the central
concepts of cdculus. Thiswas pointed out very clealy by STEINER (1969 in his
historicd analysis of the function concept, and it was investigated for many of
these mncepts by FREUDENTHAL in his"Didadicd Phenomenadlogy" (1983.

2.8 Personal shaping of mathematical concepts

When a mathematician wants to define a oncept then there is not much free
dom for him to formulate the defining property. Some aithors prefer to use
formal language, otherstry to avoid it as much as posdble. A comparison o
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text bodks from the same time shows rather littl e variety of styles. A compari-
son between text-bodks with similar objedives of diff erent times reveds more
differences. But again, thisis more a @ngruence of developing standards than
the expresson d diff erent persondliti es.

However, during the devel opment of an areaof mathematics, concept formation
is strongly influenced by the leading mathematician at the time. This has been
true for cdculus. There are fundamental diff erences in the ways Leibniz and
Newton developed cdculus. A historicd analysis can still i dentify their diff e-
rent fundamental ideas in modern cdculus. The same is true for the theory of
functions of a cmplex variable. One can still seetoday the diff erent approaches
of Riemann and Welerstrassin amodern presentation o the theory. It is poss-
ble to speaulate with KLEIN that their diff erent "charaders’ are resporsible for
the different ways of building up the theory (1926 p. 246). But it is more
helpful to concentrate on the diff erences in experience, intention, and image &
the dedsive influences on concept formation.

A ledure on the didadics of calculus shoud give the student teaders an
oppatunuty to reagnize diff erent sources of central parts of the theory, to get
aaquainted with the mathematicians who pushed forward the devel opment, and
to become aware of their motives and images.

Although mathematics has auniversal quality when presented in highly develo-
ped theories, ore shoud na forget the fad that there ae women and men
behindit who have influenced the devel opment.

When mathematicians want to learn a new theory they read or hea definitions
and at once use catain routines to understand the new concepts. They are &
ease when they find that the new concept fits into their existing network of
concepts, when it corresponds with their own images, knowledge and experien-
ce They fed resistant to the new concept when they encourter discrepancies. In
any case, leaning anew concept involves an adive processof concept forma
tion. Very often this is acaompanied by fedings of interest or resistance And
thisis something that the student teaders will often have experienced in their
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own mathematica education at the university.

However many of them have theideathat teading concepts meansto present as
much knowledge éou the concept as they can in as interesting a manner as
posdsble. This is a point at which student teaders can encourter results of
communication analysis (ANDELFINGER 1984,VoIGT 1991), which show that
students often resist when they are expeded to lean new concepts. Asa onse-
guence they often form "personal concepts’ which dffer from their teader's
concepts. Andit is surprising that this may occur even though they can solve a
lot of problems abou the @mncept corredly. This shoud sensiti ze the student
teaders to comments made by the students which they will hea when they
observe mathematics instructionin their schod pradice

2.9 Strategies of concept teaching

Finaly, we arive & arather delicate problem. When the student teaters look
at their own experience & learners of mathematics they al know that there ae
teaders, professors and authors who are very eff edive in teading concepts,
whereas others raise many difficulties for the leaners. What is the mystery of
successul teading? Is there an optimal way of teating concepts?

The preceding discussons will proted the student teaders from giving simple
answers. They are awvare that leaning concepts is rather complex. It is not
difficult for them to criticize empiricd studies testing the dfediveness of
"method A" versus "methodB". They can also easily identify the wesknesses
of investigations abou the df edivenessof artificd methods such asthose used
in psychodogicd testing (e.g. CLARK 19717). They soonfind ou that one neals
atheory of teading in the badkgroundas abasis for making dedsions. A good
example of such atheory is genetic teaching (e.g. WITTMANN 1981), which can
be used to give asense of diredion.

To master the complexity of concept teading the students findthat they need to
look at the relevant variables.
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Teading mathematicd concepts has to take into consideration

0 the students: their cognitive structures, their intellecual abiliti es,
their attitudes, and their needs;

(i) the concepts: different types of concept, logicd structure of de-
finiti ons, context, development of concepts;

(i)  theteaders: their persondlity, their intentions, their badkground.

Behind ead of these variables there is awide variety of theories (see VOLL-
RATH 1989). It isimpaossbleto present these theories to the students. However,
they can be sensitized to the problems and can get references to literature for
further study. Some of these problems can also be touched onin exercises and
at seminars.

These considerations help the student teaders to get a diff erentiated view of
teading: concept teading hasto be planned with resped to these variables.

A reasonable plan for teating a concept in a cetain teading situationiscdled
astrategy. My pradiseisto look at strategies for teading concepts by conside-
ring diff erent ranges of strategies (VOLLRATH 1984. Local strategies refer to
the plan of ateaching unit which is applicable for standard concepts like ra-
tional function, bouned function, step-function, etc. Regiond strategies serve
for planning the teading of keyconcepts in teaching sequences such as the
concept of limit, derivative, or integral of afunction.

Globd strategies are neaded for leading concepts which permede the whole
curriculum, for example the concept of functionis a candidate for such alea
ding concept.

The student teaders get the oppatunity to study models of these types of
strategy from "didadicd masterpieces’ (see &so WITTMANN 1984. And they
are invited to develop strategies on their own for some examples of diff erent
ranges.
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Finaly, the student teaders $oud get some hints how to evaluate cetain
strategies. The most important goal is that they can reason, withou being dog-
matic. It would be adisaster if didadics of mathematics as a science were to
prop upeducational dogma.
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