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1. The concept of background theory

A theory of mathematics education shoud provide arational dedsion making
processfor the development of a arriculum for chocsing and arranging the
content, offering necessary simplificationsand pasing possble gplicaions. A
rational basis for making dedsions like these has been a mathematicd "badk-
groundtheory" in the didadic of mathematics. This concept was introduced
and has often been used by German ddadicians. Let us begin by looking at
two typicd examples.

KIRSCH (1972 off ered a"didadicall y oriented system of axioms for elementa-
ry geometry". His approad is st forth asfollows (p.139:

"In the foll owing we present an approach to elementary geometry which is
mathematicdly corred andisintended primarily to be an aid for planning
geometry teading from age 11-14. It is thought of as an arientation for
teaders; they shoud have the akiomatic system 'uncder the table' withou
discussng ead particular paint with the students. They ought to be leto
trandate the akiiomatic theory easily into the language of mathematics
teading."

An axiomatical y-founded geometry course for teaders was written by HoL-
LAND (1974 which wasintended as abadgroundtheory for geometry teading
from age 11-16.He described the role of abadkgroundtheory asfollows (p.9):

"Obviously, a deductive gproach to geometry which is thought to be a
badkgroundtheory for geometry teaching has to take into consideration a
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didadicd paint of view when choosing the aioms, arranging them, andfor
building up the whale theory. This didadicd point of view results from
investigations abou the leaning processes of students.”

Let uslook at the concept "mathematicd badkgroundtheory”. Thereferenceto
"mathematica theory" implies a need for a mathematicd foundition d ma-
thematicsinstruction. Hence, thereisa dose mnredion between mathematics
and instruction. The word "background' implies ©me necessary "distance'
between mathematics and teading due to educaional considerations. Didadi-
cianswhorefer to badkgroundtheories are implicitly convinced that a percei-
ved gap between mathematicd requirements and pedagogicd pradice can be
narrowed by use of a suitable mathematicd badcgroundtheory. Thusidentify-
ing or developing a amnvenient badkgroundtheory is a matter of research in
mathematics educdion. Comprehension d this concept has developed in the
didadics of mathematics as has the involvement of didadiciansin developing
badkgroundtheories for mathematics education. By use of an historicd analy-
sis below we try to identify phases in the development of this concept.

2. Background theoriesfor geometry teaching

For many centuries EucLID's Elements srved as the badkground theory for
teading geometry. Curriculum dedsions have been based onthistheory asthe
main authoritative source Let us consider, for example, a very interesting
textbodk by J.A.C. MICHELSEN (1781): Versuch in socratischen Gesprachen
Uber diewichtigsten Gegenstande der ebenen Geometrie. The bodk attemptsto
off er geometry to students in the manner of socratic dialogues. As the aithor
remarked, the book was the result of red dialogues between him asthe teader
and his gudents. Thisisavery original textbodk fromamethodolaical pdnt
of view. MICHELSEN was areputable professor of mathematics and ptysics at
the Gymnasiumin Berlin. But the bodk humbly foll owed EucCLID's Elements as
can be seen in the table below which MICHELSEN took as ajustificationfor his
approach (pp.172174).The left column refers to EucCLID's Elements Book |,
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and the numbers refer to definitions (Erkl&rungen), postulates (Forderungen),
axioms (Grundsétze), theorems (Lehrsétze), and problems (Aufgaben). The
right column consists of the related parts of the bodk (Versuche...). There ae
just afew divergences in the beginning which are indicated in the table.
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Thus, we identify

Phase 1. EucLID's Elements as the sol e backgroundtheory for geome-
try teadiing.

Subsequently a new geometric gpproach was given by MOBIUS (1827) in his
bodk Der baryzentrische Kalkil. Transformation geometry became the "mo-
dern" geometry and textbodk writers darted to regard this geometry as a badk-
groundtheory. An ealy exampleis C.A. BRETSCHNEIDER's bodk (1844). The
organizaion of hisLehrgebauck der niederen Geometrie israther closeto the
ideas of MOBIUS.

1 Synthetische Geometrie
a) Geometrie der Lage (site)
b) Geometrie der Gestalt (shape)

¢) Geometrie des Mal3es (measurement)

2 Analytische Geometrie
a) Goniometrie
b) Trigonometrie

¢) Koordinatengeometrie

This textbodk was far removed from the needs and abiliti es of students. The
mathematics was prominently dominating. But thiswas not necessarily the only
way to tead transformation geometry. For FELIX KLEIN (1908) the transforma-
tions were very close to adions.

He therefore saw the posgbility that geometry could be taught by motions,
foll owing the psychdogicd principle of adapting instruction to the dhildren's
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development. Under KLEIN's influence transformation geometry became very
important for mathematics education. We regard this as

Phase 2 Transformation geometry as the modern badgroundtheory
for geometry teading.

Atthe end d thelast century HILBERT's Grundagen der Geometrie (1899 had
brought to perfedion EucLID's foundition d geometry. But his foundition o
geometry stimulated many mathematicians to develop rew founditions. The
situation was substantialy changed in that diff erent mathematica theories as
possble badkground theories came into existence Didadicians now had to
choose a spedal theory as badgroundtheory from among several competing
theories, moreover, they had to providerational justificationfor their dedsiors.
A typicd question was: Which axioms are most convenient for teating geo-
metry in the sendary schod? To ill ustrate this, we dte some examples from
apaper by WILLERS (1922.

"All axiomatic systems based onthe opinion that ‘the space is a number-
manifold in which each padnt is given by three mordinates and viceversa,
are uselessfor schod educaion” (p.69.

"Ead axiomatic theory of vedors, as introduced by GRASSVMANN and
whose basic concepts and theorems were developed by PEANO is insuffi-
cient for mathematics educaionaswell" (p.70.

"The system of PIERI isnot appliceblefor schods. SincePIERI does not use
the concept of ordering, the postulates are difficult and complicated" (p.71).

"Therigid systems of HILBERT, VEBLEN, PEANO (Prinzipii), R. MOORE, and
SCHWEIZER, andthe ones of VERONESE (Elementi), INGRAMI, and RAUSEN-
BERGER (containing many mistakes) which were made espedally for ma-
thematicsteading are nat suitable with regard to the concept of congruence
for modern schod mathematics' (p.79.

"In the foll owing paragraph a system is developed which appeas didadi-
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cdly pradicd. It uses point, line segment, and refledion as fundamental
concepts and introduces motion as a derived concept” (p.77).

WILLERS used ddadicd arguments against diff erent axiomatic goproades. But
we can seethereis no douh abou the role of an axiomatic theory as badk-
groundtheory (p.698):

"Geometry teading can rely onvisual perception in the beginning. Howe-
ver, it can nd dowithou a crred mathematicd basis for the teader."”

Now we have

Phase 3: Diff erent axiomatic theories as competing badkgroundtheo-
ries for geometry teading

But there was arather large gap between geometry instruction and the badk-
groundtheory due to the cognitive limitations of students. It would seem that
textbodk writers could orly foll ow such a badgroundtheory "from a distan-
c€', so to sped.

The didadics of mathematics began to take form during the 1960s and people
involved in mathemati cs education simultaneously developed more confidence
They now started to develop new axiomatic theories convenient for teaching
purposesin order to minimizethe percaved dscrepancy between badground
theory and instruction. During this period ddadicians had the task both of
devel oping axiomatic theories and d reasoning for their utility as bad<ground
theories for instruction. This development opened an interesting approac for
reseach in the didadics of mathematicsfor mathematicianswhowereinvolved
in mathematics educdion Thiskind d reseacch made it easier for didadicians
to communicae with mathematicians and to also establish didadics of ma-
thematics as aresearch dscipline.

Consider again, for example, HOLLAND's (1974 ideas abou his axiomatic
approacd to elementary geometry (p.7):
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"This bodk presents for the first time a omplete akiomatic gpproach of
Euclidean plane geometry. Its g/stem of conceptsanditschoice and argani-
zaion of the geometricd content is closely oriented to recent geometry
teadinginschod asit is presented through textbodks curricula, and caalo-
gues of objedives of ead county.”

This gatement istypicd and helps us to identify

Phase 4: An axiomatic theory derived by didadiciansfrom pradice of
teading as badgroundtheory for teading geometry.

From these akiomaticd approaches came lineaizations of curricula and re-
strictionto relevant concepts, problems, and method,which, in turn, restricted
astudent's view and undbrstanding of geometry. In relation to teading pradi-
ce it had the tendency to isolate the school world The widevariety intheworld
of geometry did nad appea and seaned to have no chanceto emerge. Therefore
this development led to a a@isis during the 1970s.

Theweaknesses of this approach were highlighted by FREUDENTHAL (1973 in
adiscusson abou the angle oncept:

"As has been stressed severa times, there is more than ore angle ancept.
Some didadicians claim that there is only one which is corred. Love of
order is fine unlessit goes as far as to forbid important concepts because
they do nd fit into the system. Properly said such would be abad mathema-
ticd attitude. It has cost agrea ded of troude to get mathematicians used
to thefad that there ae various number concepts, which are now carefully
distinguished from ead ather. If rather than being distinguished all angle
concepts but one ae forbidden, puplswill never lean to dstinguish them
—forbidding rules never work (476).

"At least three angle mncepts are pradicdly, and thus didadicdly, impor-
tant. Systematizing mathematicians are prone to restrict themselves to ore
and to eliminate the others. It is the same mentality that led the Greeks to
restrict themselves to integers and to ban fradions. Of course, in every day
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life and in numericd mathematics one used fradions thowgh in pue ma
thematics they were forbidden. It is the same schizoplrenic atitude & that
of amathematician who reagnizesthe goniometric angle concept only, bu
of necessty spedks of the visual angle under which he sees an oljed and
who knows very well that a half turn and aturn and a half is not the same
when he turns a key in a keyhde. | admit there ae people who are not
convinced by such arguments. To their view the existenceof instrumentsto
measure angles is rather an argument against angles in mathematicd in-
struction. Their suspicionisin particular aroused by the cyclic orientation
of the half-lines pencil and that angle amncept | termed analytic."(p. 487.

It is clea from these statements that one spedal axiomatic theory is not suffi-
cient as badkgroundtheory. For theteading of geometry, apassbleway out of
this difficulty might be a extension d the concept of badkground theory.
Perhaps we can take badgroundtheory as the total variety of relevant con-
cepts, posshle sets of axioms theorems, problems and applicaions of a ma-
thematicd area (VOLLRATH, 1979. For instance "group theory" is not re-
stricted to a spedal axiomatic representation d the theory, bu includes all
knowledge abou groups. Under this general asped the badgroundtheory can
assst us in answering questions guch as. Which are the most important corn-
cepts of thetheory? Which aretheir most important properties? Which methods
aretypicd for thistheory? Which theorems areimportant for understanding the
relationship between the main concepts? Which theorems are the basis for
efficient algorithms? Which problems led to the historicd development of the
theory? Which are the most important applicaions of this theory? It can also
help to dedde whether a given definition, theorem or proof is corred, and
whether d Simplificationisadequate. The answers Can help in making curricu-
lar dedsions andin choasing, arranging and representing content of the theory
for instruction. Thisinterpretation d abad<groundtheory may help to establish
a gred variety of problems, methods, and ideas in mathematics instruction.
Further, it may help to overcome the limitations of a spedal axiomatic go-
proach. This leals usto identify
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Phase 5: The totality of geometric knowledge, including theideas
conredions, applicaions and evaluations, may provide the
badkgroundtheory for teading geometry.

The mathematician working in geometry is most often aspedalist whose main
interest liesin aspedal field of geometry. Certainly it is an important task for
the didadician to use the knowledge of the spedali st andto get an overview of
the whole aea But the view of the didadician canna be solely direded to-
wards mathematicians. There ae many diff erent aspeds of our cultura world
under which geometry is of some interest: e.g., geometry as a inventory of
axiomatic theories; geometry as areservoir of strategies for solving problems;
geometry as atheory of red space geometry as atheory for adions; geometry
as aresult of cultural history; geometry as investigation o forms (VOLLRATH,
1976.

Mathematics education shoud take into account more than just the aiomatic
asped when a aurriculum is planned. Indedd, it isthe scholarly and pgrofesso-
nal resporsibility of the mathematics educaor to exercise predsely this
function.

3. Back ground theoriesfor teaching fractions

EucLIiD worked with propations and avoided fradions. It was a long time
before fradions were regarded as numbers. Parallel to the founditions of
geometry, the foundations for numbers were laid at the end d the last century.
It is difficult to dscern whether it was a disadvantage for children that no
Greek tradition existed for teading fradions. But as a result, the teating of
fradions did na evolve & dogmaticdly as geometry teading. But even
though, a tradition developed. Two operations led to fradions: dividing and
measuring. This occurred as a mnsequence of daily life; people deding with
money, length, areg volume, weight, and time. On a more alvanced level
fradions were regarded as numbers.
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Some inspiration came from pedagogues who integrated the teading of frac
tions into their pedagogicd systemse.g., PESTALOZZI (17461827). More
contributionswere made by didadicians at the beginning of the present century
when they developed theories of mathematics educaion and applied these
theoriestoteading fradionse.g., KUHNEL (1916. But these devel opment gave
rise to difficulties from their interpretations: "two thirds of" had to be trans-
lated into "times two thirds". Hence multi plicaion and dvision were infused
into the process aong with the difficulties asociated with teading these
concepts. Much eff ort was expended to overcome these difficulties. Itis sgni-
ficant that the solutionwas not sought through mathematics, bu rather, through
methoddogy.

A typicd introductionto fradions can be seenin theill ustration below froma
textbodk (FLADT, KRAFT, DREETZ, 1959, gl).

The teading of fradions becane a1 undsputed part of arithmetic in which
fradions were defined as quaients of natural numbers. Similarly, addition,
subtradion, multiplication, and dvision becane a extension d operationson
the natural numbersto the positi ve rational numbers Thiswas often justified by
areferenceto HANKEL's "permanence principle'. Thus we have

Phase 1: Thetheory of fradions as part of thetraditional arithmetic as
the sole mathematicd badkground theory for corntent; but
with the didadics of mathematics being resporsible for the
method d teading.

This phase corresponds to the first phase of geometry teading, i.e., with just
one badkgroundtheory. But itsinfluenceon curricular dedsionswasnat nealy
as strong as in geometry. From this came arather naive treament of fradions
guided by pradice A number of didadicd inventions were made to dminish
the difficulties.

During the 1960s didadicians felt the need to more firmly construct fradions
as part of the founcitions of the number system in mathematics (FREUND
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§ 3. Entstehung und Versnachaulichung der Briiche. 11

Ein Vieleck heiBit regelmiBig, wenn es lauter gleiche
Seiten und gleiche Winkel hat.

Durch die Ecken eines regelmiBiigen Vielecks kann man einen
Kreis legen. Er heift ,.Umkreis” des Vielecks.

~ I1. Das Rechnen mit gemeinen Briichen.
§3. E 1 und ¥ haulichung der Briiche.
Der Bruch als Teil cines Ganzen.
1. Ein Biicker teilt eine Torte in 2.
4. 8, 16 gleiche Teile. So ent-
stehen 2Halbe. 4 Viertel, 8 Achtel,
16 Sechzehntel der Torte.
. Zeichne Kreise mit dem Halb- Biid 23.
messer 3 cm und teile sie nach
AugenmaB in a)2 b)3 ¢)4 d)5 e) 6 f) 7 gleiche Teile. Prife die
Teilung mit dem Zirkel oder mit dem Winkeimeaser nach.

-

Halbe Viertel Achtel

2.3=3=1 4-l=t=1 §i=f=1

Drittel Sechstel Zwolftel
3d=%4=1 6-d=f=1 12 h=H=
Bild 24.

[

[

. Zeichne eine Schokoladentafel (Bild 25) und gib an. wie du sie — mog-
lichst auf verschiedene Weise — in a) Halbe b) Drittel c) Viertel
d) Sechstel e) Zwolitel f) Vierundzwanzigstel brechen kannst.

196566). Accordingly diff erent axiomatic charaderizaions were developed
for positiverational numbers aswell as methods for constructing them through
natural numbers. An axiomatic theory of the positive rationals based onthe
axioms of an ordered semifield was rather close to the traditional badground
theory.

On the other hand, fradions had to beintroduced as an extension d the natural
numbers. This approach had its origin in a mnstruction through natural num-
bers. Didadicians in the German Democratic Repulic tried to make this
approach elementary (TIETZ et dlii, 1969, p.2Pas can be seen below.
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Alle Briche, die durch Kirzen oder Erweltern auseinander hervorgehen,

fassen wir zu einer Klasse zusammen.

DEFINITION: Alle Briche, die durch Kirzen oder Erweitern avssinander
> hervorgehen, bilden sine Klasss. Jede soiche Klasse heiSt gebrochene Zehl.

Wenn wir z. B. von der ,,gebrochenen Zahl 1** sprechen, so meinen wir also

diejenige Klasse von Brichen, in der v. o. der Bruch 1., aber auch die Briche 1

% usw. liegen. '

Sprechen wir von dem ,.Bruch 4", s0 meinen wir nur das aus den natiriichen

Zahlen 1 und 2 gebildete geordnete Paar.

Die verschiedenen Briche % und £ geben dieselbe gebrochene Zahi an, aiso

dieselbe Kiasse von Brich.n. Wir kénnen deshalb schreiben: ll =1

Haufig wird zur Angabe einer gebrochenen Zahl derjenige Bruch benutzt,

dessen Zihler und Nenner teilerfremd sind.

Das Kiirzen oder Erweitern eines Bruches bedeutet, daB mar von diesem Bruch

zv einem anderen Bruch aus derselben Kiasse iibergeht, d. h. dieselbe gebro-

chene Zahl durch einen anderen Bruch angibt (Bild B 2).

ol f——--

Bezeichnen wir die Menge der gebrochenen Zahlen etwa mit R®, so gitt z B.:
leR fere

Um gebrochene Zahien an einem Zahienstrahi darzustellen, gehen wir foigen-

dermaBen vor:

Wir tragen vom Anfangspunkt eines Strahls aus eine Strecke mit beliebiger

Lange ab (Einh ecke). An den Anfangs- bzw. Endpunkt dieser Strecke
schreiben wir die Brliche ¢ bzw. 1 zur Bezeichnung der entsprechenden ge-
brochenen Zahlen. Yon dem Endpunkt der Einh ecke ausgehend, tragen

wir Strecken mit derselben Lange fortigufend ab und schreiben an die erhaltenen
Punkte der Reihe nach die Briche . , 4, usw. (Biid B 3). Durch Abtragen von

Bruchieiler der Einheitsstrecke finden wir entsprechend die Punkte, die be-
lebigen anderen gebrochenen Zahien zugeordnet sind. Dadurch wird jeder
gebrochenen Zahl ein Punkt des Strahis zugeordnet. .

Didadicians were now facel with a choice between an axiomatic and a on-
structive approach. This problem was part of an ardent discusson abou the
role of axiomatics in mathematics educaionin 1965(LAuGWITZ, 1965, STEI-
NER, 1965. No clea-cut resolution emerged from this dispute.

Thus we identify

Phase 2: Diff erent approadhesto fradions—constructiveor axiomatic
— as competing badgroundtheories for teading fradions.
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There was sgnificant agreement for the need of more mathematicd rigor in
both methodand formulation. It was very important, for example, to distingu-
ish between "fradion" and "fradional number", (which led to inexpresshle
rules). All these atempts were rather far from tradition and at the same time,
rather inadequate for teading. Therefore didadicians ought a mathematica
approach which was closer to tradition and which would help to overcome the
well-known diff iculti es with multi pli cationand dvision. A solutionwasfound
by the discovery of the "operator" concept at the end o the 1960s. A relevant
badkgroundtheory was elaborated by such ddadicians as GRIESEL (1968),
KIRSCH (1970, PICKERT (1968) which transformed an ideaof H. WEYL (1918.

This new badgroundtheory could easily be made more el ementary by means
of a"macine" model . Helping to stimulate this approach was the "stretchers
and shrinkers' ideaof BRAUNFELD (1968. The influence of this approach can
be seenin atextbodk below (GRIESEL, SPROCKHOFF, 1974 p.28. Wenow have

Phase 3: The operator approach developed by didadiciansas  suit-
able badkgroundtheory for teating fradions.

The resulting curricula and the relating textbodks however suffer from an
expanding net of artificial concepts and complicated cdculationswith operator
chains which, at the same time, negleded certain aspeds of fradions. For
example multiplication was introduced before aldition, which was rather
unratural for most teaders and students.
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Bruchoperatoren
1. Fillle die Tabelien aus und gib, wenn tich, die Ersat hine an.
0 —F-FB— »—3 °o—G—F— o—@@—
15cm 15cm S5cm 60 cm
6 dm 6 dm 2dm 24dm|
27cm 27Tm 9m 108 m
Eine E]-Maschine und eine [E Maschine sind miteinander gekoppeit. Diese Anlage kann weder durch
eine Mal-Maschine noch durch eine Durch-Maschine ersetzt werden.
2mm N ]/mjm\" V 9mm 12 mm 36 mm
[ | = . bt + -4 5 . .
A=N A=\ A—=N

Wir erfinden eine neue einzelne Maschine fiir cine Anlage aus einer [4]- und einer [3]-Maschine

12 mm 9 mm 12 mm 9 mm 12 mm 9mm

Das Programm der neuen Maschine bezeichnen wir kurz auch mit (gelesen: dreiviertel).

Die neue Maschine heifst Das Zeichen § nennt man einen Bruch.
3 Zahler des Bruches

Ihr Programm [ ] heiBt Brachoperator. = Bruchstrich r

2. Fiille die Tabellen aus und vergleiche.

a) ] g —l }——- —H[—{:S}—h) . : —{ }'—
45m| 45 m 45 mj 45m 45m
105m 105 m 105 m| 105 m 105 m
165m)| 165 m 165 m 165 m 165 m
225m| 25m 225m) 225 m| 225m
Der Mal-Operator bestimmt den Zihler des Bruches, B—0 30368
der Durch-Operator bestimmt den Nenner des Bruches. @ E] E] El
B-3=-3-8=-0F B-B-=-8-03=-[] (3 3]

3. Ersetze durch eine Bruchmaschine.

» B0 -0 @O0 0O B0 G055 B3
b ({7 3{2 O-6 @3- @-00 B0 G0
4. Ersetze die Bruchmaschine auf zwei Arten durch cine Anlage aus zwei Maschinen.

o3 B 0B G B il & 3 E

5. Schreibe zZu Aufgabe 4 die Operatorgleichungen.

6. Gib cine 2 cm lange Strecke in die Maschi ! B &< und T ST sowie
in die hende Bruch hine. Zeichne wie oben im Beispiel, bei den Maschi I auch
das Zwischenergebnis.

A 7. Gib wie in Aufgabe 6 eine 3 cm [24 mm] lange Strecke in die [J]-Maschine [[f]-Maschine} und in

die entsprechenden Anlagen aus zwei Maschinen ein.
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Subsequently during the 1970s new curriculawere devel oped in which various
aspeds of fradions were presented and combined systematicaly. Thiscan aso
beinterpreted asthe result of an extended concept of mathematicd badkground
theory asill ustrated in the foll owing table (HAYEN, VOLLRATH, WEIDIG, 1983,

p.3J):

Inhaltsverzeichnis

Mathematische Begriffe
und Bezeichnungen 35

1 Teilbarkeit 6 4 Multiptikation und Division

1 Teiler und Vielfache 6 von Briichen 50

2 Pfeildiagramme 9 Vervielfachen 50

3 Endstellenregein 10 Teilen 53

4 Quersummenregeln 12 Multiplizieren 56

5 Primzahlen 14 Dividieren 60

6 Gemeinsame Teiler 16 Die Menge der Bruchzahlen 63
7 Gemeinsame Vielfache 18 Terme mit Briichen 64

8 Vermischte Aufgaben 20 Vermischte Aufgaben 66

NN AW N -

5 Anwendungen der Bruch-

2 Briiche 22 rechaung 68
1 Bruchoperatoren 22 operator . )
2 Briiche als MaBzahlen 25 measure ! Amell? 68 . portion
. ) 2 Vergleichen von Anteilen 70
3 Bruchteile 26 fraction . .
. - 3 Anteile von Anteilen 72
4 Erweitern und Kiirzen 28 L .
4 Addieren von Anteilen 74
S Bruchzahlen 32 S MaBstabe 75
6 Vermischte Aufgaben 35 quotient scale
6 Geometrische Figuren
3 Addition und Subtraktion und Drebhungen 78
von Briichen 36 1 Kreise 78
1 Vergleichen 36 2 Geometrische Korper 81
2 Addieren und Subtrahieren 3 Drehsymmetrische Figuren 83
gleichnamiger Briiche 39 4 Drehsymmetrische Korper 85
3 Addieren und Subtrahieren 5 Drehungen 86
ungleichnamiger Briiche 41 6 Winkel 88
4 Gemischte Zahlen 45 7 Messen von WinkelgréBen 90

(.

Vermischte Aufgaben 47 8 Vermischte Aufgaben 93
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Thus, we identify

Phase 4. Thewhdle variety of approaches, properties and aspeds of
pasiti ve rational numbersis considered as badground theo-
ry for teading fradions.

This new attitude, in turn, opens up many possbiliti es for investigations,
discussons, and curriculum construction for didadicians.

4. Discussion

Fromthe comparison d the developments of teading geometry and fradions,
it seams obvious that there ae similar trends, but with some diff erences. For
example, arigorous mathematicd point of view appeas later for fradionsthan
for geometry. Further, a pedagogicd tradition is more prominent for fradions
than for geometry. An explanation for this might be that the foundation d the
number system did na occur before the end d the last century.

We have identified phases in the evolution of an understanding of mathemati-
cd theories as badgroundtheories. This corresponds to a devel opment of the
self-concept of didadicians. But discussons among didadicians continue to
reved different attitudes towards mathematicad badkground theories. Many
didadicians are convinced of theimportant role that certain axiomatic theories
play as badkgroundtheories for mathematics educaion, bu they are not yet
ready to subscribe to the wider concept. We must therefore wonder what will
be the next phase and weaher it will be astep forward o backward. In any
case, it isvery important in the next phase to identify curricular problems and
their related argumentswhich can be mnsidered with resped to amathematica
badkgroundtheory in order to get an awarenessof the potential as well as the
limitations of this approach. Finally, it seems clea that a mathematicad badk-
groundtheory is just one of various comporents of atheory of mathematics
education and that its role will also be influenced by changing appraisals of
these other comporents.
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