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It is one objective of teaching analysis in the secondary school to enable the

students to use the rules correctly.  Another aim is to teach them the founda-

tions of the theory.  But unfortunately the proofs are often too diff icult as to be

found by the students themselves or even to be understood by them on an

elementary level.  Therefore we must look for selected topics which can be

approached by the students mainly on their own.  These topics should be

important enough for the efforts of the students.

We show in an example how algebraic methods can give the students an idea of

a small theory which they can find by themselves and which is relevant to a

larger part of analysis.

1. The derivative of a polynomial function

The first class of functions discussed in analysis teaching is the set F of

polynomial functions

f: x anx
n+...+a,x+a, x � R, ak

� R, k = 0,..., n.→

Because we want to consider such functions as algebraic objects we define sum

and product:

f + g:  x  f(x)+ g(x),→

f �  g:  x f(x) �  g(x).→

By these definitions (F, +, � )  forms an integral domain with : x 0 as~
0 →

additive neutral element and : x  1 as multiplicative neutral element.~
1 →

Now f can be written as

(A)         f a I a I an
n= + + +~ ... ~ ~ ,1 1
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with I:  x x and  : x a for any a� R.  Let the derivative Df of f  be found→ ~a →

as

Df : x  nanx
n-1 + ... + 2a2x + a1,→

or

(B)       D f na I a I an
n= + + +−~ ... ~ ~1

2 12

This can be done by calculating

l i m
( ) ( )

h

f x h f x
h→

+ −

0

or in a pure algebraic way:

f (x + h) �  f (x) + Df (x) – h (mod h2)

by congruences modulo h2 (LEVI 1968).

D is a mapping of F into F. The students get the problem to characterize D

algebraically.

2. Algebraic characterization of the derivative

It is a typical problem of modern mathematics to characterize an object by its

general attributes. It is the beginning generalization of a mathematical method.

To find a solution we can transform the problem into the question: Which rules

have we to know for the derivatives of the 'building stones' of f  to be able to

find Df ?

We show a possible way of answering that question. A first catalogue of

axioms may be found as follows.

f is a sum of functions.  We should know D (f + g).  Comparing (A) and (B) we
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find

(I)       D(f + g) = Df + Dg.

The sum (A) consists of products of type .  What can we say about D( )?~a f ~a f

We find again by comparison

(II)      D ( ) = Df .~a f ~a

We should also know D(I'). (A) and (B) give us

(III)     D (In) = nIn-1

Are we ready now?  Since (III) is only defined for n > 1 we did not get D .~
1

We postulate

(IV)      D = .~
1

~
0

We now show that (I)-(IV) is a complete system of axioms for D. We conclude

D a D a a D a
I I I V

~ ( ~ ~
) ~ ~ ~ ~ ~

,
( ) ( )

= ⋅ = = ⋅ =1 1 0 0

and by induction

D(f1 +     + fn) = Df1 + - -. + Dfn.

This delivers (B).

But we now discuss our system of axioms. (III) is not simple enough, because

it can be built up by the 'building stone' I. We can find a new system of axioms

for D by asking the question: What should we know to be able to prove (III) by

induction?  For the first step of the induction we need DI. We find by (A) and

(B)
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(V)      DI = .~
1

For the second step of the induction we must be able to express D(If).  We find

by (A)

I f a I a I a In
n= + + ++~ ... ~ ~ ,1

1
2

1

by (B)

D I f n a I a I a

na I a I a I a I a

Idf f

n
n

n
n

n
n

( ) ( ) ~ ... ~ ~

~ ... ~ ~ ... ~ ~

.

= + + + +

= + + + + + +
= +

1 2 1 0

1 1 0

We therefore demand

(IV)     D(If) = f + Idf.

We can replace (III) by (V) and (VI).  But this is too much.  We only need

(V1), because, if we take as second system

(I) D(f + g) = Df + Dg,

(II) D a f a D f( ~ ) ~ ,=

(IV) ,D
~ ~
1 0=

(VI) D(If) = f +IDf,

we can prove

D I D I ID I
VI I V

= ⋅ = + = + ⋅ =(
~

)
~ ~ ~ ~ ~

,
( ) ( )

1 1 1 1 0 1

and this is (V).  Again from (II) and (IV) we get , and by induction weD a~
~= 0
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now can prove (III) : D(In) =nIn-1. Another induction delivers again 

D(f1+...+fn) =Df1+... +Dfn.  

So we find (B).  The derivative is again characterized by an algebraic system of

axioms.

(I) and (II) show that D is an endomorphism of the module F over R. Is it also

an endomorphism concerning the multiplication?  We should know D(fg).  By

generalizing (VI) we find the supposition

(VII)    D(f �  g) = Df �  g + f � Dg

and prove it.  This gives a third system of axioms for D:

(I) D(f +g) = Df + Dg,

(II) D a f a D f( ~ ) ~ ,=

(V) DI = ~
1

(VII)  D(f �  g) = Df �  g + f � Dg

We can now prove  becauseD
~ ~
1 0=

D f D f D f f D f D
VI I

= ⋅ = ⋅ + ⋅ ⋅(
~

)
~ ~

,
~ ~

( )
1 1 1 also 0 = 1 .

If we get , this is (IV), since F is integral domain. Again by (II)f ≠ ~
0 D

~ ~
1 0=

and (IV) we get and by induction D a~
~= 0

D(In)=nIn-1 and D(f1+-..+fn)=  Df1 + - - - + Dfn. 

Therefore D is again characterized by a system of algebraic axioms.  From the

algebraic point of view D is the derivation (KUROŠ 1964) of F with DI = . ~
1
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3. The problem of inversion of a mapping

Does there exist an inverse mapping to the mapping D of  F into F? Evidently

not, because, e.g., D(I + ) =  = DI. Therefore it happens that two different~a
~
1

functions have the same image under the mapping D. We now want to know all

functionsf with the same image Df.  We define:

f g D f D g
def

~ ⇔ =

is an equivalence relation given by the homomorphism D. The class of

functions g equivalent to f  is

.f g D f D g= ={ }

We want to know more about this class:

 Dg = Df  �   Dg + (– Df) = Dg + D(– f) = D(g – f) = .   ~
0

We need the set of all functions mapped on . Let~
0

g c I c I cm
m= + + +~ ... ~ ~

1 0

be an arbitrary function with Dg = . Then~
0

.~ ~ ... ~0 1
1= = + +−D g mc I cm

m

Therefore . We already know . The set of all~ ~ ... ~ ~
c c cm m= = = =−1 1 0 D c~

~
0 0=

f unctions mapped on is therefore , the kernel of  the~
0 { }~a a ∈R

homomorphism (KUROŠ 1964) .  Every class f can be written as

.{ }f f a a= + ∈~ R
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Let . The mapping{ }F f f F= ∈

δ: F F  d(f)  = D f→ w ith

is an isomorphism. This ill ustrates the Homomorphism Theorem. Our algebraic

consideration makes clear the connection between derivative and indefinite

integral.  consists of all i ndefinite integrals of f.f

4. The extension of a mapping

Another typical algebraic problem is to find an extension of a mapping to a

larger domain.  In our case, we ask for an extension of D to the field of rational

functions, so that the extension is again a derivation.

Let  be an extension of D, then for f, g �  F, g �   , we findD
~
0

D f D f g g D f g g f g D g= = +(( / ) ) ( / ) ( / ) .

Multiplication by g,

gD f D f g g fD g= +( / ) ,2

this delivers

.~
( / )

~ ~
D f g

D fg fD g

g
= −

2

With for all f �  F we have a derivation which is an extension of D. So~
D f D f=

we have found in a pure algebraic way the rule for the derivative of a quotient.
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This program can be extended, e.g. there can be discussed linear differential

equations by using operators (LIERMANN 1966).

In certain analysis courses (in German High Schools) it is usual only to treat

polynomial functions or rational functions.  In this case it could be suitable to

restrict oneself on algebraic methods without using limits.  Suggestions may be

found in (LEVI 1968).
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